Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotech materials made simple – crystal structures altered by a single protein

12.03.2015

Nacre is not just something pretty to be used for jewellery and decoration. It possesses an intricate layer structure with high strength and hardness, and the naturally formed crystals it contains have some particular properties. This is why industry is working to produce similar materials using biological models.

Scientists in Haifa and Saarbrücken have now succeeded in replicating the combination of calcium carbonate and biopolymeric compounds which nature took millions of years and a host of environmental factors to achieve. Using a very simple method, they have been able to show that a single protein species is enough to produce specific effects on the formation of crystal structures.


Perlucin has several characteristic protein strands, here indicated by colored loops in a BallView model. They are assumed to cause the observed structural alterations in calcium carbonate crystals.

Copyright: INM; only free within this press release

The results of their research have recently been published as a cover publication in the journal Chemistry of Materials.

In nacre, layer lattices of inorganic calcium carbonate alternate with layers of organic material. Chitin, collagen and various proteins ensure that the calcium carbonate grows in these defined layers. What role the proteins play during growth had not previously been explained, but the assumption was that several proteins acted together to control the structure of the calcium carbonate lattice as well as themselves forming part of the nacreous layers.

However, Ingrid Weiss of the INM – Leibniz Institute for New Materials in Saarbrücken and her colleague Boaz Pokroy at the Technion Israel Institute of Technology have now shown that the crystal lattice of calcium carbonate can be altered using just a single protein species.

“This finding simplifies matters and opens up new possibilities for white biotechnology”, says Weiss, who is Head of the Biomineralization Program at the INM. “Until now, white biotechnology has labored under the idea that mineralization could not be recreated using biological models, because it was assumed that it took a combination of several proteins and a number of factors that were not readily understandable to make biomineralization possible”, she explains. If the natural processes appeared too complicated, they would not be pursued in industrial development.

Pokroy and Weiss have now proved that it need not be that complicated.

In their experiments, the researchers extracted the protein perlucin from abalone (Haliotis) shells and combined it with green fluorescent protein (GFP), a trick which enabled them to convert the insoluble perlucin to a water-soluble form. They added this solution at different concentrations to a calcium carbonate solution and examined the crystals produced. The results were compared to crystals produced from a pure calcium carbonate solution and crystals produced from a calcium carbonate solution with GFP.

Only the dissolved perlucin was incorporated in the inorganic carbonate lattice, where it produced notable and wide-ranging distortions to the lattice. The effect follows a principle of “all or nothing”: small quantities of protein are already enough to cause defined lattice distortions. Once the distortion starts, it then reproduces itself continually across the lattice. “GFP alone simply coexists with calcium carbonate – it surrounds the calcium carbonate lattice like a jacket without changing it”, explains the biomineralization expert. As in a shell, it seems to be the perlucin that influences the growth and structure of the crystal lattice.

To explain this phenomenon, the researchers used the INM’s expertise in mussel proteins and the expertise in crystal analysis at the Institute in Haifa. This combination made it possible to observe the reactions of perlucin in the crystal lattice. The scientists are now keen to see whether other proteins have specific effects on the structure and functionality of inorganic crystal lattices.

Original publication:
Eva Weber, Leonid Bloch, Christina Guth, Andy N. Fitch, Ingrid M. Weiss and Boaz Pokroy; Chem. Mater., 2014, 26 (17), pp 4925–4932,
DOI: 10.1021/cm500450s; http://pubs.acs.org/doi/abs/10.1021/cm500450s

Your experts:
Dr. Ingrid Weiss (PD)
INM – Leibniz Institute for New Materials
Head Biomineralization
Tel: 0681-9300-318
ingrid.weiss@inm-gmbh.de

Prof. Boaz Pokroy
Technion – Israel Institute of Technology; Haifa
Bio-Inspired Surface Engineering and Biomineralization
Phone: +972-4-8294584
bpokroy@tx.technion.ac.ilI

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 195 employees.

Dr. Carola Jung | idw - Informationsdienst Wissenschaft
Further information:
http://www.inm-gmbh.de

More articles from Materials Sciences:

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

nachricht A new path through the looking-glass
12.11.2018 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>