Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biopolymer - designer interfaces between biological and artificial systems

13.12.2012
In their recently published review article in the Science and Technology of Advanced Materials, Yasuhiko Iwasaki at Kansai University and Kazuhiko Ishihara at the University of Tokyo describe how developments in synthesis techniques have liberated the polymer MPC’s potential for a huge range of medical and biological applications.

A polymer inspired by the lipids in cell membranes is proving an invaluable biomaterial. Like the cell membrane, the polymer 2-methacryloyloxyethyl phosphorylcholine (MPC) can provide a surface for biological reactions to take place, but it can also suppress unfavourable processes.

In their recently published review article, Yasuhiko Iwasaki at Kansai University and Kazuhiko Ishihara at the University of Tokyo in Japan describe how developments in synthesis techniques by showing that the 2-methacryloyloxyethyl phosphorylcholine (MPC) have liberated the polymer’s potential for a huge range of medical and biological applications.

In fact the polymers were already attracting interest in the early 1970s. However until more facile synthesis techniques were developed investigations were limited and the polymer was little understood. By 1999 MPC polymers were being produced on an industrial scale, allowing more substantial studies. MPC is easily polymerized in a range of architectures. The chemical can suppress reactions such as protein adsorption and cell adhesion and has a high and readily adjustable solubility in water. These versatile properties lend MPC polymers to a range of applications.

The authors also describe methods for generating the polymer for effective use in non-fouling coatings. Formed into poly(MPC) brush structures with specified chain architectures, they can also be used as surfaces for controlling cell functions. In addition, the researchers explain how surface modifications with MPC polymers are effective in improving blood compatibility. The polymers can suppress protein adsorption, platelet adhesion, and platelet activation at blood-contacting surfaces and they can also be solute permeable. As such they are well suited for coating cardiovascular applications such as stents, cardiopulmonary bypasses, and ventricular assist devices.

Based on the fact that “MPC and various kinds of MPC polymers are now available commercially worldwide, and many medical devices treated with MPC polymers are used in clinics,” they underline how far research into applications of MPC has advanced, and indicate how many possibilities remain for exploiting the chemical further.

Media contacts:
Mikiko Tanifuji, National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494

Journal information
Yasuhiko Iwasaki (1) and Kazuhiko Ishihara (2) Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces, Science and Technology of Advanced Materials Vol. 13 (2012) p. 064101 (doi:10.1088/1468-6996/13/6/064101).
URL: http://dx.doi.org/10.1088/1468-6996/13/6/064101

Authors Affiliation
1. Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan

*E-mail address: yasu.bmt@kansai-u.ac.jp

2. Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

*E-mail address: ishihara@mpc.t.u-tokyo.ac.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>