Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-inspired materials decrease drag for liquids

07.09.2018

An eco-friendly coating-free strategy has now been developed to make solid surfaces liquid repellent, which is crucial for the transportation of large quantities of liquids through pipes.

Researchers from KAUST's Water Desalination and Reuse Center have engineered nature-inspired surfaces that help to decrease frictional drag at the interface between liquid and pipe surface.


Materials could be engineered to repel liquids without coatings when carved with a bio-inspired microtexture.

Credit: KAUST 2018

Piping networks are ubiquitous to many industrial processes ranging from the transport of crude and refined petroleum to irrigation and water desalination. However, frictional drag at the liquid-solid interface reduces the efficiency of these processes.

Conventional methods to reduce drag rely solely on chemical coatings, which generally consist of perfluorinated compounds. When applied to rough surfaces, these coatings tend to trap air at the liquid-solid interface, which reduces contact between the liquid and the solid surface. Consequently this enhances the surface omniphobicity, or ability to repel both water- and oil-based liquids.

"But if the coatings get damaged, then you are in trouble," says team leader, Himanshu Mishra, noting that coatings breakdown under abrasive and elevated temperature conditions.

So Mishra's team developed microtextured surfaces that do not require coatings to trap air when immersed in wetting liquids by imitating the omniphobic skins of springtails, or Collembola, which are insect-like organisms found in moist soils. The researchers worked at the KAUST Nanofabrication Core Laboratory to carve arrays of microscopic cavities with mushroom-shaped edges, called doubly reentrant (DRC), on smooth silica surfaces.

"Through the DRC architecture, we could entrap air under wetting liquids for extended periods without using coatings," says co-author Sankara Arunachalam. Unlike simple cylindrical cavities, which were filled in less than 0.1 seconds on immersion in the solvent hexadecane, the biomimetic cavities retained the trapped air beyond 10,000,000 seconds.

To learn more about the long-term entrapment of air, the researchers systematically compared the wetting behavior of circular, square, and hexagonal DRCs. They found that circular DRCs were the best at sustaining the trapped air.

The researchers also discovered that the vapor pressure of the liquids influences this entrapment. For low-vapor pressure liquids, such as hexadecane, the trapped gas was intact for months. For liquids with higher vapor pressure, such as water, capillary condensation inside the cavities disrupted long-term entrapment.

Using these design principles, Mishra's team is exploring scalable approaches to generate mushroom-shaped cavities on to inexpensive materials, such as polyethylene terephthalate, for frictional drag reduction and desalination. "This work has opened several exciting avenues for fundamental and applied research!" Mishra concludes.

Carolyn Unck | EurekAlert!
Further information:
https://discovery.kaust.edu.sa/en/article/610/bio-inspired-materials-decrease-drag-for-liquids
http://dx.doi.org/10.1038/s41467-018-05895-x

More articles from Materials Sciences:

nachricht Nanocrystal 'factory' could revolutionize quantum dot manufacturing
18.03.2019 | North Carolina State University

nachricht Design and validation of world-class multilayered thermal emitter using machine learning
15.03.2019 | National Institute for Materials Science, Japan

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>