Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond conventional solution-process for 2-D heterostructure

22.06.2018

Solution-processed transitional metal chalcogenide (TMD) nanosheets exhibited limited light-absorption and low quantum efficiencies because of their atomic-scale thicknesses and large specific surface area accompanied with a high density of surface defects, which restricted their applications in optoelectronics.

Xiao Huang and co-workers, who were devoted to the development for the synthesis of 2D nanomaterial-based hybrids and their applications in sensing and energy-related applications, from Nanjing Tech University, demonstrated a facile wet-chemical method to directly grow organic-inorganic hybrid perovskite (MAPbBr3, MA = CH3NH3+) NCs on surfaces of dispersible MoS2 nanosheets, recently published in Science China Materials (doi: 10.1007/s40843-018-9274-y).


This is a schematic model of MAPbBr3||MoS2 epitaxial relationship.

Credit: ©Science China Press

Recently, TMDs and organic-inorganic hybrid perovskites have been combined into heterostructures, with the aim to marrying their good electronic and optical properties. Huang, the leader of the research group, tells us "Such heterojunctions have been realized mostly via solid-state methods typically involving chemical vapor deposition (CVD), mechanical exfoliation and/or dry transfer, which are difficult to scale-up for practical applications."

She emphasized, "Direct growth of perovskite crystals on dispersible 2D materials in solution enables the scalable production of solution-processible hetero-structures, but has not been realized, because the precipitation of perovskite crystals usually requires a non-polar solvent, which is incompatible with most solvation conditions for 2D materials."

By facile tuning the solvation conditions, cubic-phased MAPbBr3 (MA = CH3NH3+) nanocrystals were epitaxially deposited on trigonal/hexagonal-phased MoS2 nanosheets in solution. In spite of the mismatched lattice symmetry between the square MAPbBr3 (001) overlayer and the hexagonal MoS2 (001) substrate, two different aligning directions with lattice mismatch of as small as 1% were observed based on the domain-matching epitaxy.

This was realized most likely due to the flexible nature and absence of surface dangling bonds of MoS2 nanosheets. The formation of the epitaxial interface affords an effective energy transfer from MAPbBr3 to MoS2.

The dispersible MAPbBr3/MoS2 epitaxial heterostructures can be directly drop-casted between two graphite electrodes drawn by pencil on a piece of paper to form a photodetector with simple configuration, and demonstrated the much improved performance compared to using MoS2 or MAPbBr3 alone due to the improved light absorption and enhanced energy transfer.

In addition to the improved energy transfer and light absorption, the use of MoS2 nanosheets provided flexible and continuous substrates to connect the otherwise discrete MAPbBr3 nanocrystals and achieved the better film forming ability.

Prof. Xiao Huang tells us "The scalable preparation of heterostructures based on organic-inorganic hybrid perovskites and 2D materials via solution-phase epitaxy may bring about more opportunities for expanding their optoelectronic applications."

###

This research was funded by the National Natural Science Foundation of China (51322202), and the Young 1000 Talents Global Recruitment Program of China.

See the article: Zhipeng Zhang, Fangfang Sun, Zhaohua Zhu, Jie Dai, Kai Gao, Qi Wei, Xiaotong Shi, Qian Sun, Yan Yan, Hai Li, Haidong Yu, Guichuan Xing, Xiao Huang, Wei Huang. "Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets."

Sci. China Mater. 2018, doi: 10.1007/s40843-018-9274-y.

http://engine.scichina.com/publisher/scp/journal/SCMs/doi/10.1007/s40843-018-9274-y?slug=full%20text https://link.springer.com/article/10.1007%2Fs40843-018-9274-y

YAN Bei | EurekAlert!
Further information:
http://dx.doi.org/10.1007/s40843-018-9274-y

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>