Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Basque Country University researcher studies atom to atom cement

09.02.2010
The PhD thesis by Mr Hegoi Manzano Moro at the University of the Basque Country (UPV/EHU), entitled Atomistic simulation studies of cement components, aimed to provide an answer to these questions and to understand the properties and characteristics of the components of the material.

When cement powder is mixed with water, a series of complex chemical reactions and physical changes takes place. The final result – cement paste – is a complex, multi-component material with a variable and porous composition. Cement is, moreover, a “live” material – throughout its life, even dozens of years after hardening, its structure continues evolving, undergoing physical and chemical changes.

Amongst the different components of the cement matrix, the most important is undoubtedly that known as C-S-H gel. C-S-H gel, acronym for calcium silicate hydrate, represents 70% of the matrix and is mainly responsible for the cohesion and mechanical properties of the material. Nevertheless, despite its importance, many aspects of the gel, including its exact composition, are still unknown.

Simulation at an atomic scale

The application of the atomistic simulation enabled Mr Manzano to understand the properties and characteristics of this gel. The atomistic simulation methods enable the properties and the behaviour of the materials to be studied at a level of the interactions amongst the atoms making them up. Knowledge of cement at an atomic scale will facilitate the design of modifications that will enhance performances and properties

After four years of research, Mr Manzano has found, amongst other things, that there is a clear relation between the mechanical properties of C-S-H gel and the internal structure of the nanoparticles that it is made of. C-S-H gel is made up of colloidal nanoparticles that aggregate in various ways in order to make the material. The manner in which these nanoparticles are ordered amongst each other is probable the factor that most influences the mechanical properties of the cement. The closer together they are and the less space between them there is, the more dense is the C-S-H gel and the better its mechanical properties. But this is not the only factor to be taken into account. The internal structure of each one of these particles also affects the total.

Each particle is formed by laminas of calcium oxide surrounded by chains of silicates of various lengths. We have shown that, the longer these silicate chains, the individual properties of each particle improve and, at the same time, the overall qualities of the C-S-H gel are improved. Based on these results, Mr Manzano concluded that the mechanical properties of the cement can be enhanced by 30% if, during its hydration, the formation of longer silicate chains and more compact C-S-H gels is boosted. An improvement of this magnitude would have great impact on the cement industry which, in 2008, produced almost 3,000 million tons of cement. An enhancement of 30% in the mechanical properties implies approximately 30% less cement in order to achieve the same resistance in a building. Thus, the production of cement is reduced and, as a consequence, emissions of CO2 to the atmosphere likewise.

Despite the research already carried out, there are still many aspects of cement to be studied, in order to achieve improvements in the material that will have an impact on a sector as important as construction.

Amaia Portugal | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=2552&hizk=I

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>