Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BASF and Max Planck Institute for Polymer Research inaugurate joint research laboratory for graphene

25.09.2012
• International team of scientists will research into carbon-based materials for use in energy storage systems and electronic applications

• Investment in Carbon Materials Innovation Center adds up to €10 million

BASF and the Max Planck Institute for Polymer Research (MPI-P) opened their joint research and development platform, the Carbon Materials Innovation Center (CMIC), today at BASF’s Ludwigshafen site. A multidisciplinary task force will research the scientific principles and potential applications of innovative carbonized materials. The twelve-member international team is composed of chemists, physicists and material scientists.

The activities conducted in the 200 square meter laboratory will include synthesizing and characterizing new materials and evaluating their potential uses in energy and electronic applications. The total investment for the joint research and development platform amounts to €10 million. The cooperation is initially scheduled to run for three years.

“We are on the threshold of a new cross-sectional technology that will revolutionize numerous applications and open the way to innovations. The race to discover future applications of carbon-based materials like graphene is in full progress and we want to be among the very front runners when it comes to utilizing this potential,” said Dr. Andreas Kreimeyer, Member of the Board of Executive Directors of BASF and Research Executive Director, at the laboratory inauguration ceremony. “Through the Carbon Materials Innovation Center and together with our partners, we want to become better acquainted with the materials in order to evaluate the possibilities for sustainable applications. There is a wide range of ideas for applications, including displays or batteries with a vast market potential for these applications,” Kreimeyer added.

MPI-P and BASF have been jointly researching the carbon material graphene since 2008. The CMIC is the next important step in jointly investigating and successfully accessing the potential of not only graphene, but also of other innovative carbon-based materials. “Graphene is a novel material with many promising properties and potential applications”, Prof. Dr. Klaus Müllen, Director at MPI-P, who has already made important advances in synthesizing defined graphene nanoribbons, said. The material features its specific semiconductor properties with unique performance characteristics only in this specific form.

Graphene is closely related to graphite that is used, for example, in pencils. In contrast to graphite, graphene consists of only a single atomic layer of carbon atoms. Müllen emphasized the great potential of graphene: “The properties of the two-dimensional crystal are fascinating. Graphene conducts electricity and heat very effectively, is ultra-light weight and simultaneously very hard. Graphene is also chemically very stable, elastic and practically transparent. These properties make the material highly attractive for numerous technological applications.” These include solar cells and touchscreens, for instance. Graphene could also be used in certain components in the automotive industry: besides using graphene-based composites, further potential uses for this interesting material include batteries, catalysts or catalyst carriers.

The CMIC is the first research platform to be operated by BASF jointly with a scientific partner on a BASF site. “The cooperation with MPI-P is an outstanding example of our knowledge Verbund in BASF research. The aim is to gain access to new technologies and business areas in the field of carbon-based materials and allow the rapid transfer of our application-oriented knowledge base into industry, so we can use it to generate sustainable solutions from chemistry,” Kreimeyer added.
Contacts:

Max Planck Institut für Polymerforschung
Press and Public Relations
Stephan Imhof
Phone: +49 6131 379-132
imhof@mpip-mainz.mpg.de
BASF SE
Corporate Media Relations
Holger Kapp
Phone: +49 621 60 41040
holger.kapp@basf.com
About the Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Coworkers from Germany and abroad are conducting fundamental research on both production and characterization of polymers as well as analyzing their physical and chemical properties. The beginning of 2012 saw a total of 503 people working at the MPI-P, of whom 119 were supported by third-party funding and 70 were privately sponsored. The work force was made up of 109 scientists, 149 doctoral and diploma students, 70 visiting scientists and 175 technical, administrative and auxiliary staff.
About BASF
BASF is the world’s leading chemical company: The Chemical Company. Its portfolio ranges from chemicals, plastics, performance products and crop protection products to oil and gas. We combine economic success, social responsibility and environmental protection. Through science and innovation we enable our customers in almost all industries to meet the current and future needs of society. Our products and system solutions contribute to conserving resources, ensuring healthy food and nutrition and helping to improve the quality of life. We have summed up this contribution in our corporate purpose: We create chemistry for a sustainable future. BASF posted sales of about €73.5 billion in 2011 and had more than 111,000 employees as of the end of the year. BASF shares are traded on the stock exchanges in Frankfurt (BAS), London (BFA) and Zurich (AN). Further information on BASF is available on the Internet at www.basf.com.

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>