At last, a simple 3D printer for metal

A sample part printed from bulk metallic glass via the TPF-based FFF process. Credit: © 2018 The Authors. Published by Elsevier.

Used to produce three-dimensional objects of almost any type, across a range of industries, including healthcare, aviation and engineering, 3D printed materials have come of age during the last decade. Research published in the journal Materials Today demonstrates a new approach to 3D printing to fuse metallic filaments made from metallic glass into metallic objects.

Jan Schroers, Professor of Mechanical Engineering and Materials Science at Yale University and Desktop Metal, Inc., in Burlington, Massachusetts, USA, along with colleagues point out that 3D printing of thermoplastics is highly advanced, but the 3D printing of metals is still challenging and limited. The reason being that metals generally don't exist in a state that they can be readily extruded.

“We have shown theoretically in this work that we can use a range of other bulk metallic glasses and are working on making the process more practical- and commercially-usable to make 3D printing of metals as easy and practical as the 3D printing of thermoplastics,” said Prof. Schroers.

Unlike conventional metals, bulk metallic glasses (BMGs) have a super-cooled liquid region in their thermodynamic profile and are able to undergo continuous softening upon heating–a phenomenon that is present in thermoplastics, but not conventional metals. Prof. Schroers and colleagues have thus shown that BMGs can be used in 3D printing to generate solid, high-strength metal components under ambient conditions of the kind used in thermoplastic 3D printing.

The new work could side-step the obvious compromises in choosing thermoplastic components over metal components, or vice-versa, for a range of materials and engineering applications. Additive manufacturing of metal components has been developed previously, where a powder bed fusion process is used, however this exploits a highly-localized heating source, and then solidification of a powdered metal shaped into the desired structure. This approach is costly and complicated and requires unwieldy support structures that are not distorted by the high temperatures of the fabrication process.

The approach taken by Prof. Schroers and colleagues simplifies additive manufacturing of metallic components by exploiting the unique-amongst-metals softening behavior of BMGs. Paired with this plastic like characteristics are high strength and elastic limits, high fracture toughness, and high corrosion resistance. The team has focused on a BMG made from zirconium, titanium, copper, nickel and beryllium, with alloy formula: Zr44Ti11Cu10Ni10Be25. This is a well-characterized and readily available BMG material.

The team used amorphous rods of 1 millimeter (mm) diameter and of 700mm length. An extrusion temperate of 460 degrees Celsius is used and an extrusion force of 10 to 1,000 Newtons to force the softened fibers through a 0.5mm diameter nozzle. The fibers are then extruded into a 400°C stainless steel mesh wherein crystallization does not occur until at least a day has passed, before a robotically controlled extrusion can be carried out to create the desired object.

When asked what challenges remain toward making BMG 3D printing a wide-spread technique, Prof. Schroers added, “In order to widely use BMG 3D printing, practical BMG feedstock available for a broad range of BMGs has to be made available. To use the fused filament fabrication commercially, layer-to-layer bonding has to be more reliable and consistent.”

###

Notes for editors

The article is “3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses,” by Michael A. Gibson, Nicholas M. Mykulowycz, Joseph Shim, Richard Fontana, Peter Schmitt, Andrew Roberts, Jittisa Ketkaew, Ling Shao, Wen Chen, Punnathat Bordeenithikasem, Jonah S. Myerberg, Ric Fulop, Matthew D. Verminski, Emanuel M. Sachs, Yet-Ming Chiang, Christopher A. Schuh, A. John Hart, and Jan Schroers (https://doi.org/10.1016/j.mattod.2018.07.001). It appears in Materials Today, published by Elsevier .

This study is published open access and can be downloaded by following the DOI link above.

Copies of this paper are also available to credentialed journalists upon request; please contact Jonathan Davis at j.davis.1@elsevier.com“>j.davis.1@elsevier.com or +31 20 485 2719.

About Materials Today

Materials Today is a community dedicated to the creation and sharing of materials science knowledge and experience. Supported by Elsevier, we publish high impact peer-reviewed journals, organize academic conferences, broadcast educational webinars and so much more.

Our flagship journal welcomes comprehensive articles and short communications reporting breakthrough discoveries and major technical achievements of broad interest to the materials community, in addition to review articles in engaging and rapidly developing fields. http://www.materialstoday.com

About Elsevier

Elsevier is a global information analytics business that helps institutions and professionals advance healthcare, open science and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support and professional education, including ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 38,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX Group, a global provider of information and analytics for professionals and business customers across industries. http://www.elsevier.com

Media contact
Jonathan Davis, Communications Officer
Elsevier
+31 20 485 2719
j.davis.1@elsevier.com

http://www.elsevier.com 

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors