Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arachnid Rapunzel: Researchers Spin Spider Silk Proteins Into Artificial Silk

11.02.2015

New research on the structure of spider silk, presented at Biophysical Society Meeting this week in Baltimore, is advancing the development of artificial alternatives

Incredibly tough, slightly stretchy spider silk is a lightweight, biodegradable wonder material with numerous potential biomedical applications. But although humans have been colonizing relatively placid silkworms for thousands of years, harvesting silk from territorial and sometimes cannibalistic spiders has proven impractical. Instead, labs hoping to harness spider silk's mechanical properties are using its molecular structure as a template for their own biomimetic silks.


Jan K. Rainey

A closer look at spider silk

A team of researchers from Dalhousie University in Nova Scotia is focusing on the toughest of the spider's seven types of silk—aciniform silk, used to wrap up prey that blunders into its web. Over the past few years, they have gradually unraveled its protein architecture and begun to understand the connection between its structure and function. They will present their latest findings at the 59th meeting of the Biophysical Society, held Feb. 7-11 in Baltimore, Md.

The first step in creating artificial spider silk is to replicate the proteins that make up the natural version, in this case by recombinantly expressing them in E. coli. The key protein in aciniform silk, AcSp1, has three parts. Most of the protein is a repeated sequence of about two hundred amino acids. Two tails called the N- and C-terminal domains hang off each end of the protein chain.

Jan Rainey's group at Dalhousie University used nuclear magnetic resonance (NMR) spectroscopy to analyze the structure of AcSp1's repeat sequence at very high resolution, producing one of the first spider silk repeat unit structure sequences to be reported. When they then linked more repeats together, they learned that the repeat units behaved in a modular fashion. That is, each one acted as an individual unit, instead of taking on new structure by being connected to other units. Such modularity has important consequences: it means that scientists trying to engineer artificial silk proteins can vary the length of the protein without sacrificing the entire protein's function. Plus, it means that researchers can focus on optimizing smaller, more manageable protein components before linking them together to form a large functional protein.

The next step in creating artificial silk is to spin the proteins into long strands. Spiders have specialized equipment to accomplish this task, but finding the precise laboratory conditions that recreate this process is one of the biggest challenges of creating biomimetic silks. At least for the moment, spiders are more skillful spinners than humans.

However, the researchers have found a clue to the fiber formation process in the c-terminal domain.

They determined that although in some cases silk proteins can link into fibers without the c-terminal domain, the region in general helped with fiber formation -- fibers made of proteins with c-terminal domains tended to be tougher and stronger. In addition, the researchers found replacing the aciniform silk c-terminal domains with c-terminal domains from other types of spider silk also improved fiber formation. The findings suggested that the c-terminal domain could potentially be manipulated to adjust the strength and toughness of the fibers.

"Now we know that C-terminal domains are interchangeable," said researcher Lingling Xu. "This could be useful when we encounter expression problems while producing recombinant spidroins. For example, we could choose a C-terminal domain that has a better protein expression level, solubility or stability."

Artificial spider silk remains far from commercially viable, but advances in understanding of the relationship between spider silk's structure and its function are helping scientists inch closer to creating an alternative in the lab.

"Our future goal is to synthesize fibers with tunable mechanical properties based on our knowledge of the role of each domain," said Xu.

The poster, "Roles of spider wrapping silk protein domains in fibre properties" by Lingling Xu, Marie-Laurence Tremblay, Kathleen E. Orrell, Xiang-Qin Liu and Jan K. Rainey, will be displayed Tuesday, February 10, 2015, from 1:45 to 3:45 PM in Hall C of the Baltimore Convention Center. ABSTRACT: http://tinyurl.com/mbpq6mm

ABOUT THE MEETING

Each year, the Biophysical Society Annual Meeting brings together more than 6,500 researchers working in the multidisciplinary fields representing biophysics. With more than 3,600 poster presentations, over 200 exhibits, and more than 20 symposia, the BPS Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup symposia, platform sessions, social activities and committee programs. The 59th Annual Meeting will be held at the Baltimore Convention Center.

PRESS REGISTRATION

The Biophysical Society invites professional journalists, freelance science writers and public information officers to attend its Annual Meeting free of charge. For press registration, contact Ellen Weiss at or Jason Bardi at 240-535-4954.

QUICK LINKS

Main Meeting Page: http://tinyurl.com/k8yfvyq
Symposia: http://tinyurl.com/lrahzbu
Itinerary planner: http://tinyurl.com/kxpe272

ABOUT THE SOCIETY

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, bi-monthly journal, and committee and outreach activities. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry. For more information on the Society, or the 2015 Annual Meeting, visit http://www.biophysics.org .

Contact Information
Jason Socrates Bardi, AIP
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi, AIP | newswise

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>