Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-aging elixir for solar cells

03.07.2012
Photovoltaic modules deliver power without risks to the environment and climate. But solar-power is expensive. Therefore, it is imperative that the modules last as long as possible, 25 years or more. Fraunhofer researchers in the USA are now investigating materials to protect solar cells from environmental influences to meet that goal.

Sometimes it‘s just a couple of cents that decide the success or failure of a technology. As long as solar power, for instance, is still more expensive than energy extracted from fossil fuels, photovoltaics will not be competitive on the broad open market.


In this mechanical test stand the researcher examines the quality of silicone-encased solar modules. (© Fraunhofer CSE)

“Power generation from solar energy continues to be reliant on public subsidies – this is no different in the USA than in Germany,” explains Christian Hoepfner, Scientific Director of the Fraunhofer Center for Sustainable Energy Systems CSE in Cambridge, Massachusetts, USA. “If we want renewable energy to penetrate the global market over the long term, then we must ensure it gets cheaper.”

There are no silver bullets to reach this target: Efficiency cannot be arbitrarily increased, and it is expensive to produce solar cells and modules. If you want to change something here, you have to solve a puzzle with many variables: Engineering teams around the world are searching for new technologies and production methods to make cells and modules cheaper, more efficient, more durable and reliable.

Silicone – steady and resilient
Silicone is one of the promising materials. It is a highly unusual substance – neither inorganic crystal nor organic polymer – but related to both. While PV modules have been encapsulated with silicones, until now, however, they were not widely used for laminating solar modules. Lamination is a protective coating that surrounds the fragile silicon wafer. Today most manufacturers of photovoltaic cells use ethylene-vinyl acetate, or EVA for short.

In order to determine if silicone could replace the ethylene-vinyl acetate a team of experts worked together: researchers from Fraunhofer and from Dow Corning Corporation, the world‘s largest manufacturer of silicones used in medical technology, cosmetics, the automotive industry, paper processing and electronics. The scientists coated photovoltaic cells with liquid silicone. “When the silicone hardens, it encases the cells; the electronic components thus have optimal protection,” says project Manager Rafal Mickiewicz. The experts at CSE constructed prototypes from the silicone-laminated cells, and tested these photovoltaic modules in a climate chamber at low temperatures and under cyclic loads. Afterwards the module performance was tested with a light flasher. In addition the researchers used electro-luminescence-imaging for the detection of micro cracks. A comparison of the results with those of conventional solar modules proved that silicone-encased photovoltaic modules are more resistant to cyclic loading of the type modules experience in strong winds, in particular at a frosty minus 40 degrees Celsius.

“Dow Corning Corporation collaborated with researchers at the Fraunhofer CSE Photovoltaic Modules Group for two years. This collaboration significantly improved our understanding of the materials requirements of our solar modules, particularly in regard to sustainability and output,” concludes Andy Goodwin, Global Science & Technology Manager, Dow Corning Solar Solutions.

In the meantime, the tests have been published at the 26th European Photovoltaics Solar Energy Conference in 2011. “The study results demonstrate that silicone lamination is well-suited for certain applications, because the silicone protects the fragile components on the inside well, and moreover, withstands severe temperature fluctuations. With this technology we can, for instance, make modules with thin Si cells more robust,” concludes Mickiewicz.

Dr. Christian Hoepfner | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/anti-aging-elixir-for-solar-cells.html

More articles from Materials Sciences:

nachricht A new paradigm of material identification based on graph theory
17.06.2019 | Science China Press

nachricht Electron beam strengthens recyclable nanocomposite
17.06.2019 | Kanazawa University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>