Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-aging elixir for solar cells

03.07.2012
Photovoltaic modules deliver power without risks to the environment and climate. But solar-power is expensive. Therefore, it is imperative that the modules last as long as possible, 25 years or more. Fraunhofer researchers in the USA are now investigating materials to protect solar cells from environmental influences to meet that goal.

Sometimes it‘s just a couple of cents that decide the success or failure of a technology. As long as solar power, for instance, is still more expensive than energy extracted from fossil fuels, photovoltaics will not be competitive on the broad open market.


In this mechanical test stand the researcher examines the quality of silicone-encased solar modules. (© Fraunhofer CSE)

“Power generation from solar energy continues to be reliant on public subsidies – this is no different in the USA than in Germany,” explains Christian Hoepfner, Scientific Director of the Fraunhofer Center for Sustainable Energy Systems CSE in Cambridge, Massachusetts, USA. “If we want renewable energy to penetrate the global market over the long term, then we must ensure it gets cheaper.”

There are no silver bullets to reach this target: Efficiency cannot be arbitrarily increased, and it is expensive to produce solar cells and modules. If you want to change something here, you have to solve a puzzle with many variables: Engineering teams around the world are searching for new technologies and production methods to make cells and modules cheaper, more efficient, more durable and reliable.

Silicone – steady and resilient
Silicone is one of the promising materials. It is a highly unusual substance – neither inorganic crystal nor organic polymer – but related to both. While PV modules have been encapsulated with silicones, until now, however, they were not widely used for laminating solar modules. Lamination is a protective coating that surrounds the fragile silicon wafer. Today most manufacturers of photovoltaic cells use ethylene-vinyl acetate, or EVA for short.

In order to determine if silicone could replace the ethylene-vinyl acetate a team of experts worked together: researchers from Fraunhofer and from Dow Corning Corporation, the world‘s largest manufacturer of silicones used in medical technology, cosmetics, the automotive industry, paper processing and electronics. The scientists coated photovoltaic cells with liquid silicone. “When the silicone hardens, it encases the cells; the electronic components thus have optimal protection,” says project Manager Rafal Mickiewicz. The experts at CSE constructed prototypes from the silicone-laminated cells, and tested these photovoltaic modules in a climate chamber at low temperatures and under cyclic loads. Afterwards the module performance was tested with a light flasher. In addition the researchers used electro-luminescence-imaging for the detection of micro cracks. A comparison of the results with those of conventional solar modules proved that silicone-encased photovoltaic modules are more resistant to cyclic loading of the type modules experience in strong winds, in particular at a frosty minus 40 degrees Celsius.

“Dow Corning Corporation collaborated with researchers at the Fraunhofer CSE Photovoltaic Modules Group for two years. This collaboration significantly improved our understanding of the materials requirements of our solar modules, particularly in regard to sustainability and output,” concludes Andy Goodwin, Global Science & Technology Manager, Dow Corning Solar Solutions.

In the meantime, the tests have been published at the 26th European Photovoltaics Solar Energy Conference in 2011. “The study results demonstrate that silicone lamination is well-suited for certain applications, because the silicone protects the fragile components on the inside well, and moreover, withstands severe temperature fluctuations. With this technology we can, for instance, make modules with thin Si cells more robust,” concludes Mickiewicz.

Dr. Christian Hoepfner | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/anti-aging-elixir-for-solar-cells.html

More articles from Materials Sciences:

nachricht Carbon-loving materials designed to reduce industrial emissions
06.07.2020 | DOE/Oak Ridge National Laboratory

nachricht Thermophones offer new route to radically simplify array design, research shows
03.07.2020 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Protective antibodies identified for rare, polio-like disease in children

06.07.2020 | Health and Medicine

How a mutation on the novel coronavirus has come to dominate the globe

06.07.2020 | Life Sciences

Order from noise: how randomness and collective dynamics define a stem cell

06.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>