Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An unlikely marriage among oxides

20.06.2018

Sebastian Siol is looking for new materials with unusual properties that were so far not accessible in experiments. To do this, he connects partners who don't really fit together: One partner forces the other into a state that would not be possible without the unlikely pairing. Siol also makes sure that the crystal bonds last in everyday life. Only then are they interesting for industrial applications.

The term alloy usually refers to a mixture of several metals. However, other materials can also be alloyed. In the semiconductor industry, for instance, oxide and nitride alloys have long been used successfully to tune the material’s functional properties. Usually these changes occur gradually and the properties of the base materials are still easy to recognize.


Sebastian Siol showing a sample of heterostructural oxides, which could be a promising coating for smart windows.

Empa

However, if compounds are mixed whose crystal structures do not match at all, «heterostructural alloys» are formed. In these alloys, the structure changes depending on the mixing ratio of the components. Sometimes, this yields surprising properties, which differ remarkably from those of the base materials.

It is these very oxide alloys that Empa researcher Sebastian Siol is interested in. He not only wants to discover them, but make them usable for everyday life. In his quest to find the desired material, he has to keep an eye on several materials properties at once, such as the structure, the electronic properties – and the long-term stability.

Siol joined Empa last year. Previously, he conducted research at the National Renewable Energy Research Laboratory (NREL) in Golden, Colorado, where he left behind a notable publication: alloys with «negative pressure». Together with his colleagues, he mixed manganese selenide and manganese telluride using a cold-steam technique (magnetron sputtering).

At certain ratios, the base materials merged to form a crystal lattice that was «uncomfortable» for both components. Neither of the partners could force its favorite crystal structure, which it prefers in a pure state, upon the other.

The resulting compromise was a new phase, which normally would only form at «negative pressure» – i.e. when the material is permanently exposed to tension. These materials are extremely difficult to produce under normal conditions. Siol and his colleagues at NREL have managed to overcome this difficulty. The new material, now accessible thanks to this method, displays many useful properties. For instance, it is piezoelectric. In other words, it can be used to generate electricity, produce detectors – or conduct semiconductor experiments, which would not have been possible with the pure base materials.

Researching stable systems

At Empa, Siol will bring his experience in making «impossible» oxide alloys to the table. He aims to discover oxide mixtures with a variable structure and thus stabilize them to such an extent that they become fit for everyday use. The Laboratory for Joining Technologies & Corrosion headed by Lars Jeurgens has plenty of experience in practical applications for stable oxide layers and alloys. The initial focus is on mixed oxides made of titanium and tungsten oxide, which could be of interest for window coatings, semiconductor technology or sensor technology. Siol’s colleague Claudia Cancellieri has been researching the electronic properties of oxide interfaces for several years and contributes her expertise to the project.

«The material combination is very exciting,» explains Siol. Titanium oxides are extremely stable and used in solar cells, wall paints and toothpaste. Tungsten oxides, on the other hand, are comparatively unstable and are used for smart windows, gas sensors or as catalytic converters in petrochemistry. «In the past, research often focused solely on optimizing material properties,» says Siol.

«It is crucial, however, that the material can be used for several years in the respective field of application.» For instance, this would be important for semiconductor coatings in electrochromic windows, which have to last for decades in aggressive environments, exposed to sunlight and temperature fluctuations. The Empa researchers are seeking this long-term stability.

To produce these oxide phases Siol and his colleagues use different industrially scalable techniques: controlled oxidation of thin metal films in a tube furnace or electrolyte solution, as well as reactive sputtering, where the metals are oxidized directly during the deposition process. «Impossible» oxide alloys, the subject of fundamental research until now, are thus gradually becoming tangible for industrial applications.

Weitere Informationen:

https://www.empa.ch/web/s604/heterostructural-alloys

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>