Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All-Star Nanocrystals

15.06.2015

Tiny semiconducting crystals show promise for solar cell architectures and light-emitting devices.

Ames Laboratory scientists discovered semiconducting nanocrystals that function not only as stellar light-to-energy converters but also as stable light emitters.


Image courtesy of The Ames Laboratory

Perovskite nanowires have been found to function as shape-correlated stable light emitters.

The Impact

Honing methods to fine-tune optimal characteristics of materials that convert light to energy may lead to more efficient materials, as performance depends critically on composition, crystallinity, and morphology. These perovskites could be used in the construction of new solar cell architectures, as well as for light-emitting devices and single particle imaging and tracking.

Summary
Perovskite materials, such as CH3NH3PbX3 (X = I, Br), are known to display intriguing electronic, light-emitting, and chemical properties. Researchers at the Ames Laboratory synthesized a series of perovskite nanocrystals with different morphologies (i.e., dots, rods, wires, plates, and sheets) by using different solvents and capping ligands. The Ames Laboratory team tested the nanocrystals to explore their morphology, growth, properties, and stability under various conditions.

Characterization studies of photoluminescence, like that seen with glow-in-the-dark paint, found that the rods and wires showed higher photoluminescence and longer photoluminescence lifetimes compared to other shapes. Perovskite nanocrystals with bromine were found to be particularly unstable when exposed to an electron beam during transmission electron microscopy analysis, “melting” to form smaller dot-like particles of unknown composition. Further optical studies revealed that the nanocrystals with iodine are shape-correlated stable light emitters at room temperature.

Funding

This research is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, Separations and Analysis Program through the Ames Laboratory. The Ames Laboratory is operated for DOE by Iowa State. This work was performed, in part (AFM/PL), at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the DOE Office of Science. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of DOE.

Publications
F. Zhu, L. Men, Y. Guo, Q. Zhu, U. Bhattacharjee, P.M. Goodwin, J.W. Petrich, E.A. Smith, J. Vela, “Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals.” ACS Nano, 9, 2948 (2015). [DOI: 10.1021/nn507020s]

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise

Further reports about: All-Star Energy Nanocrystals Security materials morphology photoluminescence properties

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Important Progress in the Fight against Testicular Cancer

25.03.2019 | Life Sciences

Measurement of thoughts during knowledge acquisition

25.03.2019 | Life Sciences

Eliminating hepatitis C viruses effectively

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>