Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced X-ray Topography Tool Offers More Insights into Semiconductor Material Quality

21.01.2019

Fraunhofer IISB and Rigaku Europe SE are starting a strategic partnership in order to support the European semiconductor industry in improving and better understanding their wafer quality and yield by employing the Rigaku XRTmicron advanced X-ray topography tool.

Rigaku Europe SE and Fraunhofer IISB in Erlangen are pleased to announce the formation of a strategic partnership to revolutionize the characterization of semiconductor materials by X-ray topography; therefore, Rigaku has installed the latest generation X-ray topography tool, the Rigaku XRTmicron imaging system, at Fraunhofer IISB.


X-ray transmission topogram of the 101 reflex for a full 100 mm 4H SiC wafer and a more detailed section of the wafer.

Fraunhofer IISB


Look inside of the newly installed XRTmicron at Fraunhofer IISB in Erlangen.

Kurt Fuchs / Fraunhofer IISB

Dr. Michael Hippler, president at Rigaku Europe SE in Neu-Isenburg, Germany, states: “We are proud to join forces with the highly experienced team at IISB for semiconductor substrate and epilayer characterization.”

The XRTmicron system enables investigation of crystallographic defects with high speed and highest resolution on full wafer scale. It is well suited for bare wafers, wafers with epilayer structures, partially processed wafers, as well as bonded wafers.

The amount and different types of dislocations, slip lines, dislocation networks, (small angle) grain boundaries, inclusions, precipitates, pits, scratches, stress level, etc. can be imaged and quantified on the samples.

Two different X-ray sources – a 40kV/30mA copper source and a 50kV/24 mA molybdenum source in combination with the application of a large angle goniometer accommodate a wide range of diffraction conditions.

Therefore, the XRTmicron system can be applied to different kinds of materials including semiconductors (e.g. Si, Ge, Diamond, SiC, GaN, AlN, GaAs, InP, CdTe, CdZnTe), oxides (e.g. sapphire, ruby, garnets, vanadates, niobates, quartz) and halides (e.g. fluorides, bromides).

The XRTmicron system can be operated in transmission as well as in reflection mode in order to detect defects in the volume of the sample or to quantify defects close to the surface. Furthermore, it is equipped with a standard and a high resolution XTOP CCD-camera.

This leads to a spatial resolution of 5.4 μm and 2.4 μm per pixel, respectively, for a single image size of 18 mm x 13.5 mm. Full wafer mappings and detailed defect imaging of regions of interest are possible under different diffraction conditions for sample sizes of up to 300 mm in diameter. A measurement of a full 150 mm SiC wafer under the high resolution mode, for example, takes only one hour.

Additionally, the XRTmicron system is equipped with a special slit-arrangement to perform cross section topography measurements in high resolution. This gives detailed depth information through the whole thickness of the sample.

For instance, it is possible to investigate whether the glide plane formation in partly processed wafers starts on the front or back side of the wafer. Furthermore, the defect formation due to epilayer growth on top of a wafer can be quantified by this feature.

Dr. Christian Reimann, Group Manager Silicon at Fraunhofer IISB, comments, ”The XRTmicron is the only tool available in Europe so far which fulfills the requirements of highest resolution for complete wafer mappings in shortest possible time scale to analyze single crystalline materials.

It is a revolution for crystallographic defect investigations compared to classical Synchrotron based topography measurements.”

Fraunhofer IISB will act as a demo center for the XRTmicron system in Europe. Uwe Preckwinkel, XRT product manager at Rigaku Europe SE, adds, “We already received numerous requests from the European semiconductor industry aiming to improve and better understand their product quality and yields.”

It is therefore planned to standardize the operation procedures for the different costumers due to their specific needs within the strategic collaboration between Rigaku and Fraunhofer IISB.

The XRTmicron system operated at Fraunhofer IISB is part of the “Research Fab Microelectronics Germany (FMD)” which is funded by the Federal Ministry of Education and Research.

Within this Research Fab Microelectronics Germany the Fraunhofer Group for Microelectronics and two Leibniz institutes (FBH and IHP) are bundling their expertise in order to reach and expand on a new quality in research, development, and (pilot) manufacture of semiconductor-based microsystems and nanosystems.

About Rigaku

Since its inception in Japan in 1951, Rigaku has been at the forefront of analytical and industrial instrumentation technology. Rigaku and its subsidiaries form a global group focused on general-purpose analytical instrumentation and the life sciences. With hundreds of major innovations to their credit, Rigaku companies are world leaders in X-ray spectrometry, diffraction, and optics, as well as small molecule and protein crystallography and semiconductor metrology.

Today, Rigaku employs over 1,400 people in the manufacturing and support of its analytical equipment, which is used in more than 90 countries around the world supporting research, development, and quality assurance activities. Throughout the world, Rigaku continuously promotes partnerships, dialog, and innovation within the global scientific and industrial communities.

About Fraunhofer IISB

Founded in 1985, the Fraunhofer Institute for Integrated Systems and Device Technology IISB conducts applied research and development in the fields of power electronics, energy electronics, and semiconductors according to the Fraunhofer model. As a result, the institute comprehensively covers the value-added chain for complex electronics systems, from the basic material to complete electronics and energy systems. Research focuses on the application areas of electromobility and energy supply.

For its customers, the institute develops solutions in the fields of material development, semi-conductor technology and manufacturing, electronic components devices and modules, construction packaging and connection technology, simulation, reliability, up to system development in vehicle electronics, energy electronics, and energy infrastructure. Among other things, the IISB has extensive know-how in semiconductor basic material and characterization.

The main location of Fraunhofer IISB is in Erlangen, Germany. There are further locations at the Energie Campus Nürnberg (EnCN) in Nuremberg as well as in Freiberg. The institute has more than 280 employees and an operating budget of approx. 25 million euros.

Wissenschaftliche Ansprechpartner:

Dr. Christian Reimann
Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49 9131 761 272
christian.reimann@iisb.fraunhofer.de
https://www.iisb.fraunhofer.de

Uwe Preckwinkel Rigaku Europe SE
Hugenottenallee 167, 63263 Neu-Isenburg, Germany
Tel +49 6102 77999 51
rese@rigaku.com
http://www.rigaku.com/en/products/xrm/xrtmicron

Weitere Informationen:

https://www.iisb.fraunhofer.de/ Fraunhofer IISB
https://www.iisb.fraunhofer.de/presse Pressemitteilungen Fraunhofer IISB

Fraunhofer IISB Kommunikation | Fraunhofer-Gesellschaft

Further reports about: IISB Microelectronics X-ray analytical defects semiconductor topography

More articles from Materials Sciences:

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

nachricht Engineered metasurfaces reflect waves in unusual directions
18.02.2019 | Aalto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>