Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Additive printing processes for flexible touchscreens: increased materials and cost efficiency

19.03.2019

The INM - Leibniz Institute for New Materials has developed new processes with photochemical metallization and printing (gravure printing, inkjet printing) of transparent conductive oxides (TCOs), which are significantly more time- and cost-saving. These will be presented by the scientists at this year's Hannover Messe from 1 to 5 April at Stand C54 in Hall 5.

In addition to foldable smartphones, the industry's big players are also working on flexible displays. Until now, touchscreens have been rigid and do not yield to the anatomical shapes of their wearers. They work because they have fine conductive structures near their surfaces.


Additive printing processes for flexible touchscreens: increased materials and cost efficiency

Free within this context; source: INM

When the fingers of the user tap on them or wipe them, electronically readable capacities change. For curved surfaces, such conductive tracks are applied to flexible materials such as plastic foils.

Common processes for this are time-consuming or costly because they either involve many process steps or require significant quantities of raw materials or expensive raw materials.

The INM - Leibniz Institute for New Materials has developed new processes with photochemical metallization and printing (gravure printing, inkjet printing) of transparent conductive oxides (TCOs), which are significantly more time- and cost-saving. These will be presented by the scientists at this year's Hannover Messe from 1 to 5 April at Stand C54 in Hall 5.

"Most processes for conductor paths are subtractive: metal is first applied over the entire surface and the excess metal is removed in further process steps. These classic processes, such as sputtering in a high vacuum and subsequent lithography, consume large amounts of silver," explains Peter W. de Oliveira, head of the InnovationCenter at INM.

"Our processes go the other way round: Conductor tracks are printed or deposited only where they are needed. Expensive high-vacuum technology is not needed for this. This new additive process saves time and money," de Oliveira summarizes the advantages of the new developments.

In photochemical metallization, colorless silver compounds are converted into electrically conductive silver with the aid of a photoactive layer when exposed to UV light. UV lasers can be used to "write" conductive tracks; UV-transparent photomasks or transparent stamps, which mechanically displace the silver compound, are suitable for larger-scale applications. This makes it possible to down-scale the conductive paths to a width of about one thousandth of a millimeter.

In another innovative process scientists use nanoparticle inks with TCOs such as indium tin oxide (ITO), for inkjet or gravure printing. "We use the TCOs to produce nanoparticles with special properties," explains de Oliveira. "The TCO ink is then produced by adding a solvent and a special binder. Not only does it ensure that the TCO nanoparticles adhere well to the film, it also increases the flexibility of the TCO coating: this ensures that the conductivity is maintained when the films are bent. This makes it possible to produce highly flexible transparent conductor structures, for example for touch sensors or displays, in a simple printing process".

The coating is functional after it has been cured at low temperatures below 130 degree Celsius with UV light.

Wissenschaftliche Ansprechpartner:

Your expert at INM:

Dr. Peter William de Oliveira
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
peter.oliveira@leibniz-inm.de

Weitere Informationen:

http://www.leibniz-inm.de/en

https://www.youtube.com/watch?v=U7F1XeUOy5g

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht New method inverts the self-assembly of liquid crystals
15.04.2019 | University of Luxembourg

nachricht 'Deep learning' casts wide net for novel 2D materials
11.04.2019 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>