A trick of the light

All known natural materials have a positive refractive index so that light that crosses from one medium to another gets slightly bent in the direction of propagation. In some artificial ‘metamaterial’ structures, however, negative refraction occurs such that light gets bent backwards as it enters the structure.

Thin films of high-temperature superconducting materials may achieve a similar effect according to new findings from researchers from the RIKEN Advanced Science Institute in Wako, and colleagues at the Ukrainian and Russian Academies of Sciences and Harvard University1,2.

The realization of metamaterials and their unusual optical properties has enabled a number of novel devices, including ‘invisibility cloaks’ that can completely conceal an object, as well as perfect lenses that can generate images of an object with arbitrary precision. However, there is a drawback with metamaterials explains Franco Nori from RIKEN and the University of Michigan, USA, who led the research team. “Typically, these metamaterials consist of complex metallic wires and other structures that require sophisticated fabrication technology and are difficult to assemble.”

In searching for alternative materials, Nori and his team turned to thin films of high-temperature superconducting materials. These materials crystallize in a pronounced layered structure, where superconductivity occurs only along specific atomic planes of the crystal. Beyond those planes these superconductors are insulating, so their electrical properties differ strongly between horizontal and vertical directions.

The researchers have now revealed how the layered structure of high-temperature superconductors affects the propagation of light. At certain wavelengths, electronic waves are known to be excited at the surface of the superconductor. While the existence of these surface waves is not unexpected, the researchers found that the surface waves cannot exist at some wavelengths in the far infrared (THz) part of the spectrum. “The particularities of the layered superconductor structure mean that, at these wavelengths, the structure shows a negative refractive index,” explains Boris Ivanov from RIKEN and the Ukrainian Academy of Sciences.

Although the behavior of these layered superconductors that have a negative refractive index is slightly different to the refractive properties of conventional metamaterials, they do represent a promising alternative to the complex device designs of metamaterials, says Valery Yampol’skii from RIKEN and the Ukrainian Academy of Sciences. Eventually, we may see perfect lenses or even more complex structures such as invisibility cloaks made from natural superconductors rather than from complicated artificial metamaterials, adds Nori.

The corresponding author for this highlight is based at the Digital Materials Team, RIKEN Advanced Science Institute

Media Contact

Saeko Okada Research asia research news

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors