Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A robot and software make it easier to create advanced materials

06.12.2019

Rutgers-led team pioneers automated way to make unique materials with polymers

A Rutgers-led team of engineers has developed an automated way to produce polymers, making it much easier to create advanced materials aimed at improving human health.


A Rutgers-led team adapted advanced liquid handling robotics to perform the chemistry required for synthesizing synthetic polymers. This new automated approach enables the rapid exploration of new materials valuable in industry and medicine.

Credit: Matthew Tamasi

The innovation is a critical step in pushing the limits for researchers who want to explore large libraries of polymers, including plastics and fibers, for chemical and biological applications such as drugs and regenerative medicine through tissue engineering.

While a human researcher may be able to make a few polymers a day, the new automated system - featuring custom software and a liquid-handling robot - can create up to 384 different polymers at once, a huge increase over current methods.

Synthetic polymers are widely used in advanced materials with special properties, and their continued development is crucial to new technologies, according to a study in the journal Advanced Intelligent Systems. Such technologies include diagnostics, medical devices, electronics, sensors, robots and lighting.

"Typically, researchers synthesize polymers in highly controlled environments, limiting the development of large libraries of complex materials," said senior author Adam J. Gormley, an assistant professor in the Department of Biomedical Engineering in the School of Engineering at Rutgers University-New Brunswick. "By automating polymer synthesis and using a robotic platform, it is now possible to rapidly create a multitude of unique materials."

Robotics has automated many ways to make materials as well as discover and develop drugs. But synthesizing polymers remains challenging because most chemical reactions are extremely sensitive to oxygen and can't be done without removing it during production. The Gormley lab's open-air robotics platform carries out polymer synthesis reactions that tolerate oxygen.

The group developed custom software that allows a liquid handling robot to interpret polymer designs made on a computer and carry out every step of the chemical reaction. One benefit: the new automated system makes it easier for non-experts to create polymers.

###

The lead author is Matthew Tamasi, a Rutgers doctoral student. Co-authors include doctoral student Shashank Kosuri and undergraduate student Jason DiStefano. A researcher at the Australian Centre for Nanomedicine and Centre for Advanced Macromolecular Design contributed to the study, which was funded by the New Jersey Health Foundation.

Media Contact

Todd Bates
todd.bates@rutgers.edu
848-932-0550

 @RutgersU

http://www.rutgers.edu 

Matthew Tamasi | EurekAlert!
Further information:
https://news.rutgers.edu/robot-and-software-make-it-easier-create-advanced-materials/20191121#.XegTsehKi71
http://dx.doi.org/10.1002/aisy.201900126

More articles from Materials Sciences:

nachricht First detailed electronic study of new nickelate superconductor finds 3D metallic state
22.01.2020 | DOE/SLAC National Accelerator Laboratory

nachricht A new look at 'strange metals'
21.01.2020 | Vienna University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>