Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A reimagined future for sustainable nanomaterials

02.05.2018

Pitt's Leanne Gilbertson part of Yale-led study that may 'pave the way for sustainable nanotechnologies'

Engineered nanomaterials hold great promise for medicine, electronics, water treatment and other fields. But when designed without critical information about environmental impacts at the start of the process, the materials' long-term effects could undermine those advances. With a Yale-led project, a team of researchers hopes to change that.


Researchers propose a new method for nanomaterial selection that incorporates environmental and functional performance, as well as cost.

Credit: Steve Geringer

In a study published in Nature Nanotechnology, Yale researchers outline a strategy to give materials designers the tools they need to make the necessary assessments efficiently and at the beginning of the design process.

Engineers traditionally focus on the function and cost of their products. Without the information to consider long-term environmental impacts, though, it is difficult to predict adverse effects. That lack of information means that unintended consequences often go unnoticed until long after the product has been commercialized. This can lead to hastily replacing the material with another that proves to have equally bad, or even worse, effects. Having materials property information at the start of the design process could change that pattern.

"As a researcher, if I have limited resources for research and development, I don't want to spend it on something that's not going to be viable due to its effects on human health," said Julie Zimmerman, professor of chemical & environmental engineering and co-senior author of the study. "I want to know now, before I develop that product."

To that end, the researchers have developed a database that serves as a screening tool for environmentally sustainable material selection. It's a chart that lists nanomaterials and assesses each for properties such as size, shape, and such performance characteristics as toxicity and antimicrobial activity. Mark Falinski, a PhD student and lead author of the study, said this information would allow researchers to weigh the different effects of the material before actually developing it.

"For instance, if I want to make a good antimicrobial silver nanoparticle and I want it to require the least amount of energy possible to make it, I could look at this materials selection strategy," he said.

The database is also designed to allow researchers to enter their data and make the chart more robust. The researchers say the project is a call to action to both environmental and materials researchers to develop the data needed to aid sustainable design choices.

"While materials selection is a well-established process, this framework offers two important contributions relevant to designing tomorrow's products," said Leanne Gilbertson, assistant professor of civil and environmental engineering at the University of Pittsburgh Swanson School of Engineering. "It includes engineered nanomaterials alongside conventional alternatives, as well as providing human health and environmental metrics for all materials."

Desiree Plata, John J. Lee Assistant Professor of Chemical and Environmental Engineering and co-senior author, said they want to give engineers the means to avoid unintended consequences when creating materials.

"I think engineers of all categories are hungry for this type of information," she said. "They want to build materials that solve major crises of our time, like access to food and water and sustainable energy. The problem is they have no way to assess that sustainability in a quick and easy fashion. The article published today seeks to overcome that challenge and pave the way for sustainable nanotechnologies."

###

The study's authors also include Shauhrat S. Chopra and Thomas L. Theis of the University of Illinois at Chicago.

Yale University news release; reposted with permission. "A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations." doi:10.1038/s41565-018-0120-4

Media Contact

William Weir, Yale University
william.weir@yale.edu
203-432-0105

http://www.pitt.edu 

William Weir, Yale University | EurekAlert!
Further information:
https://www.eurekalert.org/pub_releases/2018-05/uop-arf050118.php
http://www.engineering.pitt.edu/News/2018/Leanne-Gilbertson-Nature-Nanotechnology/
http://dx.doi.org/10.1038/s41565-018-0120-4

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>