Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rapid, paper-based diagnostic test for tuberculosis

07.10.2013
In a study published in the journal Science and Technology of Advanced Materials (STAM), researchers in Taiwan describe a simple, color-based diagnostic approach with the potential to detect target DNA sequences found in TB-causing mycobacteria – in just a fraction of the time required for established diagnostic tests.

More than a century after the identification of organisms that cause tuberculosis (TB), this disease remains a global public health challenge. According to World Health Organization estimates, there were 8.7 million new cases in 2011 and 1.4 million deaths. Most new cases occur in developing countries that lack the facilities and trained personnel required for early detection of TB.

In a new study, published in the journal Science and Technology of Advanced Materials (STAM), researchers in Taiwan describe a simple, color-based diagnostic approach with the potential to detect target DNA sequences found in TB-causing mycobacteria – in just a fraction of the time required for established diagnostic tests.

The standard method for TB detection in a clinical setting involves culturing the Mycobacterium tuberculosis bacillus, which requires 3-6 weeks to grow on solid culture media or 9-16 days in rapid liquid culture media. A faster alternative is the polymerase chain reaction (PCR) technology. However, it is still too slow (turnaround time 2-5 hours) and requires sophisticated infrastructure and trained personnel that might be unavailable in developing countries.

In their STAM paper, Tsung-Ting Tsai and colleagues employed gold nanoparticles and microfluidic paper-based analytical devices to achieve rapid diagnosis without the need for complex and time-consuming laboratory processes. They easily detected TB mycobacterium target sequences, and the turnaround time was approximately 1 hour after the human DNA was extracted from patients.

Although the authors are still optimizing their technology, they already believe that it will result in “affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and highly end-user-deliverable diagnostic applications”.

For more information about this research, please contact:

Media contacts:
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494

Journal information
[1] Tsung-Ting Tsai et al, Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles, Sci. Technol. Adv. Mater. 14 (2013) 044404

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>