A New Process Cleanly Extracts Oil from Tar Sands and Fouled Beaches

This method, which utilizes ionic liquids to separate the heavy viscous oil from sand, is also capable of cleaning oil spills from beaches and separating oil from drill cuttings, the solid particles that must be removed from drilling fluids in oil and gas wells.

Tar sands, also known as bituminous sands or oil sands, represent approximately two-thirds of the world’s estimated oil reserves. Canada is the world’s major producer of unconventional petroleum from sands, and the U.S. imports more than one million barrels of oil per day from Canada, about twice as much as from Saudi Arabia. Much of this oil is produced from the Alberta tar sands.

However, the production of petroleum from tar sands causes environmental damage. Part of the damage comes from the storage of contaminated wastewater from the separation process in large open air ponds. Wastewater from the ponds can seep into groundwater and pollute lakes and rivers. In addition, the requirement for large amounts of water can deplete the supply of local fresh water resources. The Penn State separation method uses very little energy and water, and all solvents are recycled and reused.

Paul Painter, professor of polymer science in the Department of Materials Science and Engineering at Penn State, and his group have spent the past 18 months developing a technique that uses ionic liquids (salt in a liquid state) to facilitate separation. The separation takes place at room temperature without the generation of waste process water. “Essentially, all of the bitumen is recovered in a very clean form, without any contamination from the ionic liquids,” Painter explained. Because the bitumen, solvents and sand/clay mixture separate into three distinct phases, each can be removed separately and the solvent can be reused.

The process can also be used to extract oil and tar from beach sand after oil spills, such as the Exxon Valdez and Deepwater Horizon incidents. Unlike other methods of cleanup, the Penn State process completely removes the hydrocarbons, and the cleaned sand can be returned to the beach instead of being sent to landfills. In an experiment using sand polluted by the BP oil spill, the team was able to separate hydrocarbons from the sand within seconds. A small amount of water was used to clean the remaining ionic liquids from the sand, but that water was also recoverable. “It was so clean you could toss it back on the beach. Plus, the only extra energy you need is enough to stir the mixture,” said Aron Lupinsky, a researcher in Painter’s group.

The researchers work with a group of ionic liquids based on 1-alkyl-3-methylimidazolium cations, a positively charged material with high chemical and thermal stability, a low degree of flammability, and almost negligible vapor pressure, which makes recovering the ionic liquid relatively simple. The team has built a functioning bench top model system and is in the process of reducing their discovery to practice for patenting.

In addition to Painter, team members include Bruce Miller, senior research associate in the EMS Energy Institute, and former students Aron Lupinsky and Phil Williams. A more detailed explanation of the research, along with photos and video, is posted on the departmental website: http://www.matse.psu.edu/news/ionicliquids. Prof. Painter can be contacted at painter@matse.psu.edu.

The Materials Research Institute coordinates Penn State’s more than 200 materials-related faculty in interdisciplinary research activities. MRI’s new home for 21st century science, the Millennium Science Complex, will open in the summer of 2011. Learn more about the Millennium Science Complex and materials research at Penn State at http://www.mri.psu.edu/.

Media Contact

Newswise Science News

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors