Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel graphene-matrix-assisted stabilization method will help unique 2D materials to become a part

01.08.2019

Scientists from Russia and Japan found a way of stabilizing two-dimensional copper oxide (CuO) materials by using graphene. Along with being the main candidates for spintronics applications, these materials may be used in forthcoming quantum computers. The results of the study were published in The Journal of Physical Chemistry C.

The family of 2D materials has recently been joined by a new class, the monolayers of oxides and carbides of transition metals, which have been the subject of extensive theoretical and experimental research.


2D copper oxide material inside the two-layer graphene matrix

Credit: Skoltech

These new materials are of great interest to scientists due to their unusual rectangular atomic structure and chemical and physical properties, and in particular, a unique 2D rectangular copper oxide cell which does not exist in crystalline (3D) form, as opposed to most of the 2D materials, whether well-known or discovered lately, which have a lattice similar to that of their crystalline (3D) counterparts. The main hindrance for practical use of monolayers is their low stability.

A group of scientists from MISiS, the Institute of Biochemical Physics of RAS (IBCP), Skoltech, and the National Institute for Materials Science in Japan (NIMS) discovered 2D copper oxide materials with an unusual crystal structure inside the two-layer graphene matrix using experimental methods.

"Finding that a rectangular-lattice copper-oxide monolayer can be stable under given conditions is as important as showing how the binding of copper oxide and a graphene nanopore and formation of a common boundary can lead to creation of a small stable 2D copper oxide cluster with a rectangular lattice.

In contrast to the monolayer, the small copper oxide cluster's stability is driven to a large extent by the edge effects (boundaries) that lead to its distortion and, subsequently, destruction of the flat 2D structure.

Moreover, we demonstrated that binding bilayered graphene with pure copper, which never exists in the form of a flat cluster, makes the 2D metal layer more stable," says Skoltech Senior Research Scientist Alexander Kvashnin.

The preferability of the copper oxide rectangular lattice forming in a bigraphene nanopore was confirmed by the calculations performed using the USPEX evolutionary algorithm developed by Professor at Skoltech and MIPT, Artem Oganov.

The studies of the physical properties of the stable 2D materials indicate that they are good candidates for spintronics applications.

Media Contact

Alina Chernova
alina.chernova@skolkovotech.ru
7-905-565-3633

http://www.skoltech.ru 

Alina Chernova | EurekAlert!
Further information:
https://www.skoltech.ru/en/2019/07/a-novel-graphene-matrix-assisted-stabilization-method-will-help-unique-2d-materials-become-a-part-of-quantum-computers/
http://dx.doi.org/10.1021/acs.jpcc.9b05353

Further reports about: 2D materials COPPER crystalline graphene monolayer nanopore

More articles from Materials Sciences:

nachricht KIST researchers develop high-capacity EV battery materials that double driving range
24.02.2020 | National Research Council of Science & Technology

nachricht OrganoPor: Bio-Based Boards for A Thermal Insulation Composite System
21.02.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>