Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to combine soft materials

01.03.2018

Technique paves the way for more complex soft devices

Every complex human tool, from the first spear to latest smartphone, has contained multiple materials wedged, tied, screwed, glued or soldered together. But the next generation of tools, from autonomous squishy robots to flexible wearables, will be soft. Combining multiple soft materials into a complex machine requires an entirely new toolbox -- after all, there's no such thing as a soft screw.


An unmodified hydrogel (left) peels off easily from an elastomer. A chemically-bonded hydrogel and elastomer (right) are tough to peel apart, leaving residue behind.

Image courtesy of Suo Lab/Harvard SEAS

Current methods to combine soft materials are limited, relying on glues or surface treatments that can restrict the manufacturing process. For example, it doesn't make much sense to apply glue or perform surface treatment before each drop of ink falls off during a 3D printing session.

But now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new method to chemically bond multiple soft materials independent of the manufacturing process. In principle, the method can be applied in any manufacturing processes, including but 3D printing and coating. This technique opens door to manufacturing more complex soft machines.

The research is published in Nature Communications.

"This technique allows us to bond various hydrogels and elastomers in various manufacturing processes without sacrificing the properties of the materials," said Qihan Liu, a postdoctoral fellow at SEAS and co-first author of the paper. "We hope that this will pave the way for rapid-prototyping and mass-producing biomimetic soft devices for healthcare, fashion and augmented reality."

The researchers focused on the two most-used building blocks for soft devices, hydrogels (conductors) and elastomers (insulators). To combine the materials, the team mixed chemical coupling agents into the precursors of both hydrogels and elastomers. The coupling agents look like molecular hands with small tails. As the precursors form into material networks, the tail of the coupling agents attaches to the polymer networks, while the hand remains open.

When the hydrogel and elastomer are combined in the manufacturing process, the free hands reach across the material boundary and shake, creating chemical bonds between the two materials. The timing of the "handshake" can be tuned by multiple factors such as temperature and catalysts, allowing different amounts of manufacturing time before bonding happens.

The researchers showed that the method can bond two pieces of casted materials like glue but without applying a glue layer on the interface. The method also allows coating and printing of different soft materials in different sequences. In all cases, the hydrogel and elastomer created a strong, long-lasting chemical bond.

"The manufacturing of soft devices involves several ways of integrating hydrogels and elastomers, including direct attachment, casting, coating, and printing," said Canhui Yang, a postdoctoral fellow at SEAS and co-first author of the paper. "Whereas every current method only enables two or three manufacturing methods, our new technique is versatile and enables all the various ways to integrate materials."

The researchers also demonstrated that hydrogels -- which as the name implies are mostly water -- can be made heat resistant in high temperatures using a bonded coating, extending the temperature range that hydrogel-based device can be used. For example, a hydrogel-based wearable device can now be ironed without boiling.

"Several recent findings have shown that hydrogels can enable electrical devices well beyond previously imagined," said Zhigang Suo, Allen E. and Marilyn M. Puckett Professor of Mechanics and Materials at SEAS and senior author of the paper. "These devices mimic the functions of muscle, skin, and axon. Like integrated circuits in microelectronics, these devices function by integrating dissimilar materials. This work enables strong adhesion between soft materials in various manufacturing processes. It is conceivable that integrated soft materials will enable spandex-like touchpads and displays that one can wear, wash, and iron."

###

This research was co-authored by Guodong Nian and Shaoxing Qu of Zhejiang University. It was supported by the National Science Foundation through the Harvard Material Research Science and Engineering Center (MRSEC).

Media Contact

Leah Burrows
lburrows@seas.harvard.edu
617-496-1351

 @hseas

http://www.seas.harvard.edu/ 

Leah Burrows | EurekAlert!

Further reports about: Harvard SEAS coating elastomers hydrogels manufacturing process soft materials

More articles from Materials Sciences:

nachricht Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard
13.11.2019 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut (WKI)

nachricht New Pitt research finds carbon nanotubes show a love/hate relationship with water
13.11.2019 | University of Pittsburgh

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>