Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new vortex identification method for 3-D complex flow

04.05.2016

"Vortex" is a common phenomenon in nature from tornado to turbulence, for example turbulence is a vortex buildup process (Figure 1). Investigators have realized that turbulence is not a purely stochastic process, but a process with coherent vortical structures which play a decisive role in fluid dynamics and energy transport. Therefore, accurate visualization of vortices from huge amount of data obtained by experiments and numerical simulations becomes a key issue to solve the turbulence which is a century-long scientific problem. A new vortex identification method called method, which has been published in Science China: Physics, Mechanics & Astronomy, would be greatly helpful to advance turbulence related researches.

The paper titled as "new omega vortex identification method" has been published on volume (59)2016 by Science China: Physics, Mechanics & Astronomy. The authors reviewed Helmoholtz velocity decomposition and presented a new vortex identification method: the method based on a deep understanding on physics of vortex structure.


Vortices (a) tornado (b) late boundary layer transition.

Credit: ©Science China Press

This method was given by Chaoqun Liu, a professor from the University of Texas at Arlington (UTA.) Researchers including Yong Yang from UTA, Yiqian Wang from Nanjing University of Aeronautics and Astronautics in China, Zhiwei Duan from Tsinghua University in China and Zhengzhong Sun from London City University in UK have applied this new method to variety of complex 3-D flows and all outcomes are promising, further proving the method is correct and accurate.

The authors proposed a further decomposition of the vorticity to vortical part and non-vortical part after reviewed Helmoholtzz velocity decomposition and some counterexamples like Blasius solution which has large vorticity but has no vortex. They introduced a so-called to define and identify vortex. is a ratio of vorticity square over the sum of vorticity square and deformation square.

... more about:
»3-D »astronomy »vortices

According to the ratio, vortex is defined when vorticity overtakes deformation or >0.5. The iso-surface of =0.52 is utilized to represent the vortex surface and further to visualize the vortex structure of the flow field. These researchers applied the method for 3 different cases including late boundary layer transition, supersonic micro vortex generator and roughness induced transition.

Although the three cases have very different Mach number which means the compressibility affection are quite different, the iso-surface of =0.52 well represent the vortex structure without wild adjustment of threshold for all three cases.

This is a unprecedented effort to give vortex a mathematical definition. All traditional vortex identification methods have a common critical weakness which is requirement of selection of a proper threshold. The threshold could be wildly changed case by case, time by time, and even area by area in same case.

Different thresholds will lead to different vortex structure and no one is able to know which threshold is appropriate and which vortex structure is correct. Being different from the traditional vortex identification methods, the method is quite universal and has no need to set up a threshold case by case.

In addition, the method has other advantages which include being easy to perform, having clear physical meaning, and high capability to capture both strong and weak vortices. In general, people think vortex is "vorticity tube", but the method indicates that vortex is a region where vorticity overtakes deformation and vortex is not vorticity tube.

Traditional vortex identification can cause many misunderstandings. For example, people believe turbulence is caused by "vortex breakdown", but it is now understood that this is caused by wrong selection of vortex threshold. It is convinced Dr. Liu's vortex identification method would greatly stimulate research of physics for turbulence generation and complex 3-D flows, especially for vortices dominant flows. It is also believed that many scientists and engineers would apply this method for vortex identification and vortex structure visualization.

###

For details, please see the article:

LIU Chaoqun, WANG Yiqian, YANG Yong & DUAN Zhiwei, New omega vortex identification method, Science China: Physics, Mechanics & Astronomy, 2016, to appear http://engine.scichina.com/publisher/scp/journal/SCPMA/doi/10.1007/s11433-016-0022-6

Science China Press http://www.scichina.com/

Liu Chaoqun | EurekAlert!

Further reports about: 3-D astronomy vortices

More articles from Materials Sciences:

nachricht Barely scratching the surface: A new way to make robust membranes
13.12.2018 | DOE/Argonne National Laboratory

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>