Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new material for the battery of the future, made in UCLouvain

17.07.2019

Renewable sources of energy such as wind or photovoltaic are intermittent. The production peaks do not necessarily follow the demand peaks. Storing green energy is therefore essential to moving away from fossil fuels. The energy produced by photovoltaic cells is stored during the day and by wind-power when the wind blows to be used later on when needed.

What do we have now?


UCLouvain's researchers discovered a new high performance and safe battery material (LTPS) capable of speeding up charge and discharge to a level never observed so far.

Credit: University of Louvain (UCLouvain)

The Li-ion technology is currently the best performing technology for energy storage based on batteries. Li-ion batteries are used in small electronics (smartphones, laptops) and are the best options for electric cars.

Their drawback? Li-ion batteries can catch fire, for instance because of a manufacturing problem. This is due in part to the presence of liquid organic electrolytes in current batteries. These organic electrolytes are necessary to the battery but highly flammable.

The solution? Switching from a liquid flammable electrolyte to a solid (i.e., moving to « all-solid-state » batteries). This is a very difficult step as lithium ions in solids are less mobile than in liquids. This lower mobility limits the battery performances in terms of charge and discharge rate.

The discovery made by UCLouvain

Scientists have been looking for materials that could enable these future all-solid-state batteries. Researchers from UCLouvain recently discovered such material. Its name? LiTi2(PS4)3 or LTPS. The researchers observed in LTPS the highest lithium diffusion coefficient (a direct measure of lithium mobility) ever measured in a solid.

LTPS shows a diffusion coefficient much higher than known materials. The results are published in the prestigious scientific journal Chem from Cell Press.

The discovery? This lithium mobility comes directly from the unique crystal structure (i.e., the arrangement of atoms) of LTPS.

The understanding of this mechanism opens new perspectives in the field of lithium ion conductors and, beyond LTPS, opens an avenue towards the search for new materials with similar diffusion mechanisms.

What's next? The researchers need for further study and improve the material to enable its future commercialization.

This discovery is nevertheless an important step in the understanding of materials with extremely high lithium ion mobility which are ultimately needed for the developing the "all-solid-state" batteries of the future. These materials including LTPS might end up being used in many the technologies that we use in our daily lives from cars to smartphones.

###

This research was performed in collaboration with Toyota, which supported scientifically and financially the study. A patent has been filed listing the UCLouvain researchers as inventors.

Media Contact

Isabelle Decoster
isabelle.decoster@uclouvain.be
32-486-426-220

http://www.uclouvain.be/

Isabelle Decoster | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.chempr.2019.07.001

More articles from Materials Sciences:

nachricht Heat energy leaps through empty space, thanks to quantum weirdness
12.12.2019 | University of California - Berkeley

nachricht How light a foldable and long-lasting battery can be?
12.12.2019 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>