Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019

Iron-based superconductors (IBSCs) have attracted sustained research attention over the past decade, partly because new IBSCs were discovered one after another in the earlier years. At the time being, however, exploration of IBSCs becomes more and more challenging. A research team from Zhejiang University developed a structural design strategy for the exploration (H. Jiang et al., China Phys. B, 2013, 22:087410), from which they succeeded in finding a series of hole-doped IBSCs with double FeAs layers in recent years. Nevertheless, the electron-doped analogue has not been realized until now.

The newly discovered electron-doped IBSC is BaTh2Fe4As4(N0.7O0.3)2, an intergrowth compound of un-doped BaFe2As2 and electron-doped ThFeAsN0.7O0.3 (see the inset of Figure 1). The new superconductor could be synthesized only when nitrogen is partially replaced with oxygen as in the case of BaTh2Fe4As4(N0.7O0.3)2.


Temperature dependence of electrical resistivity for the BaTh2Fe4As4(N0.7O0.3)2 sample, indicating a superconducting transition at 30 K. The zero-resistance temperature is 22 K. The inset shows the crystal structure projected on the ac plane. The two constituent structural blocks, named "1111" and "122" respectively, are marked, and the inter-block charge transfer is shown by the arrow.

Credit: ©Science China Press

Namely, the oxygen-free phase, BaTh2Fe4As4N2, could not be prepared albeit of the lattice matching. The realized synthetic process is actually a redox reaction, BaFe2As2 + 2ThFeAsN0.7O0.3 = BaTh2Fe4As4(N0.7O0.3)2, which indicates an essential role of inter-block charge transfer for stabilizing the intergrowth structure.

Note that, while both the constituent structural blocks share identical iron atoms, they contain crystallographically different arsenic atoms, as a consequence of the charge transfer.

Although the new superconductor is isostructural to the previous "12442-type" ones, it shows contrasting structural and physical properties. First, the structural details in the FeAs layers are different from those of hole-doped 12442-type IBSCs, but similar to most electron-doped IBSCs.

Second, the Hall-effect measurement shows negative Hall coefficient in the whole temperature range, and the Hall coefficient values are consistent with the electron doping level due to the oxygen substitution. Third, the superconducting properties such as the upper critical fields and specific-heat jump are close to most electron-doped IBSCs.

The onset resistive transition temperature of the new double-FeAs-layer IBSC is 30 K, and the zero-resistance temperature is 22 K. Correspondingly, the magnetic susceptibility and specific-heat data suggest two transitions, and the bulk superconductivity appears at 22 K. The result is in contrast with the single-FeAs-layer counterpart, ThFeAsN0.85O0.15, with the same doping level. The latter does not show superconductivity above1.8 K.

The essential role of inter-block charge transfer demonstrated seems to be insightful, which could be helpful for the exploration of broader layered materials beyond the layered IBSCs.

###

See the article: Ye-Ting Shao, Zhi-Cheng Wang, Bai-Zhuo Li, Si-Qi Wu, Ji-Feng Wu, Zhi Ren, Su-Wen Qiu, Can Rao, Cao Wang and Guang-Han Cao,"BaTh2Fe4As4(N0.7O0.3)2: an iron-based superconductor stabilized by inter-block-layer charge transfer," Sci. China Mater. (2019) doi: 10.1007/s40843-019-9438-7

This article was published online (http://engine.scichina.com/publisher/scp/journal/SCMs/doi/10.1007/s40843-019-9438-7?slug=fulltext)

Media Contact

Cao Guang-Han
ghcao@zju.edu.cn

http://www.scichina.com/ 

Cao Guang-Han | EurekAlert!
Further information:
http://dx.doi.org/10.1007/s40843-019-9438-7

More articles from Materials Sciences:

nachricht A new paradigm of material identification based on graph theory
17.06.2019 | Science China Press

nachricht Electron beam strengthens recyclable nanocomposite
17.06.2019 | Kanazawa University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>