Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Metallic Alloy That is Tough and Ductile at Cryogenic Temperatures

05.09.2014

Researchers at Berkeley and Oak Ridge Labs Test a Multi-element High-Entropy Alloy with Surprising Results

A new concept in metallic alloy design – called “high‐entropy alloys” – has yielded a multiple-element material that not only tests out as one of the toughest on record, but, unlike most materials, the toughness as well as the strength and ductility of this alloy actually improves at cryogenic temperatures. This multi-element alloy was synthesized and tested through a collaboration of researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley and Oak Ridge National Laboratories (Berkeley Lab and ORNL).


At 77K, back‐scattered electron images taken in the wake of a propagated crack show the formation of pronounced cell structures resulting from dislocation activity that includes deformation‐induced nano‐twinning. (Courtesy of Ritchie group)

“We examined CrMnFeCoNi, a high‐entropy alloy that contains five major elements rather than one dominant one,” says Robert Ritchie, a materials scientist with Berkeley Lab’s Materials Sciences Division. “Our tests showed that despite containing multiple elements with different crystal structures, this alloy crystalizes as a single phase, face‐centered cubic solid with exceptional damage tolerance, tensile strength above one gigapascal, and fracture toughness values that are off the charts, exceeding that of virtually all other metallic alloys.”

Ritchie is the corresponding author along with ORNL’s Easo George of a paper in Science describing this research. The paper is titled “A fracture resistant high‐entropy alloy for cryogenic applications.” Co-authors are Bernd Gludovatz, Anton Hohenwarter, DhirajCatoor and Edwin Chang.

The tradition of mixing two metals together to create an alloy that possesses properties its constituent elements individually lack goes back thousands of years. In the 4th millennium BC, people began adding tin, a hard metal, to copper, a soft and relatively easy to work metal, to produce bronze, an alloy much stronger than copper. It was later discovered that adding carbon to iron yields the much stronger steel, and the addition of nickel and chromium to the mix yields steel that resists corrosion. Traditional alloys invariably feature a single dominant constituent with minor elements mixed in, and often rely on the presence of a second phase for mechanical performance.

“High‐entropy alloys represent a radical departure from tradition,” Ritchie says, “in that they do not derive their properties from a single dominant constituent or from a second phase. The idea behind this concept is that configurational entropy increases with the number of alloying elements, counteracting the propensity for compound formation and stabilizing these alloys into a single phase like a pure metal.”

Although high‐entropy alloys have been around for more than a decade, it has only been recently that the quality of these alloys has been sufficient for scientific study. George and his research group at ORNL combined high‐purity elemental starting materials with an arc-melting and drop-casting process to produce high quality samples of CrMnFeCoNi (chromium, manganese, iron, cobalt and nickel) in sheets roughly 10 millimeters thick. After characterizing these samples for tensile properties and microstructure, the ORNL team sent them to Ritchie and his research group for fracture and toughness characterization.

Ritchie, who holds the H. T. and Jessie Chua Distinguished Professor of Engineering chair at the University of California (UC) Berkeley, is an internationally recognized authority on the mechanical behavior of materials.

“As high entropy alloys are single phase, we reasoned that they would be ideal for cryogenic applications, such as storage tanks for liquefied natural gas, hydrogen and oxygen,” he says. “Our work is the first in-depth study that characterizes the fracture toughness properties of this class of alloys, and lo and behold, they are spectacular!”

Tensile strengths and fracture toughness values were measured for CrMnFeCoNi from room temperature down to 77 Kelvin, the temperature of liquid nitrogen. The values recorded were among the highest reported for any material. That these values increased along with ductility at cryogenic temperatures is a huge departure from the vast majority of metallic alloys, which lose ductility and become more brittle at lower temperatures. Ritchie and George believe that the key to CrMnFeCoN’s remarkable cryogenic strength, ductility and toughness is a phenomenon known as “nano-twinning,” in which during deformation, the atomic arrangements in adjacent crystalline regions form mirror images of one another.

“These nano-twins are created when the material undergoes plastic deformation at cryogenic temperatures,” Ritchie says. “This represents a mechanism of plasticity in addition to the planar-slip dislocation activity most metals undergo at ambient temperatures. The result of nano-twinning deformation is a continuous strain hardening, which acts to suppress the localized deformation that causes premature failure.”

Ritchie notes that the mechanical properties of CrMnFeCoNi and other high-entropy alloys have yet to be optimized.

“These high-entropy alloys may well be capable of even better properties,” he says.

This research was supported at both Berkeley Lab and ORNL by the DOE Office of Science.

Additional Information

For more about the research of Robert Ritchie go here

For more about the research of Easo George go here

#  #  #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Lynn Yarris | Eurek Alert!

Further reports about: Cryogenic ORNL alloys chromium dominant fracture materials mechanical metallic properties temperature temperatures

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>