Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A material with promising properties

22.11.2017

Konstanz scientist synthesises an important ferromagnetic semiconductor

The Collaborative Research Centre CRC 1214 at the University of Konstanz has developed a method for synthesising Europium (II) oxide nanoparticles - a ferromagnetic semiconductor that is relevant for data storage and data transport


Picture of a hybrid particle taken by a transmission electron microscope. Pictured are the inorganic (dark) and organic (light) lamellas that the particle is made of, as well as the tubular shapes (the low-contrast area in the middle). Through vaporisation with Europium, the hybrid stage can be transformed into pure EuO.

Copyright: University of Konstanz

Ferromagnetic semiconductors have attracted increasing attention over the last decade. Their properties make them promising functional materials that can be used in the field of spin-based electronics (spintronics). Spintronics is of crucial importance for the storage and transport of information.

In an interdisciplinary collaboration, researchers at the University of Konstanz successfully developed a method for synthesising Europium(II) oxide (EuO) nanoparticles, a ferromagnetic semiconductor with extremely promising properties. The researchers also demonstrated that the nanoparticles have magnetic properties because of their structure. The results of the joint research project have been published in the 20 November 2017 issue of the scientific journal Advanced Materials.

The collaboration of the research groups led by Professor Sebastian Polarz (inorganic chemistry), Professor Mikhail Fonin (experimental physics) and Professor Ulrich Nowak (theoretical physics) from the University of Konstanz, as well as the electron microscopy team of the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) headed by Dr Axel Lubk, was carried out within the framework of the University of Konstanz’s Collaborative Research Centre (SFB) “Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures”.

“Without the cooperation of these research teams, we could not have achieved these results”, says Bastian Trepka, lead author of the study and a member of Sebastian Polarz's research team Functional Inorganic Materials, where the nanoparticles have been synthesized.

The properties of anisotropic and magnetic nanoparticles are at the centre of the research project A5 of the SFB. Anisotropic means that the shape and the magnetic, optical or electronic properties are not identical for all spatial directions of the particle. This in turn makes it possible to investigate not only the new and often improved properties of nano-structured materials, but also the additional properties caused by anisotropy.

Producing nanoparticles from ferromagnetic semiconductors such as Europium(II) oxide constitutes a huge challenge, especially in anisotropic geometry. After all, the particles with the expected new interesting properties are to be anisotropic, too. “The aim is to deepen our understanding so that we can modulate and access the properties of nano-systems on demand”, says lead author Trepka. Using their special method, the researchers succeeded in producing high-quality and anisotropic EuO-nanoparticles that can be used to observe structure property effects.

The method is based on a two-stage process. In a first step, a hybrid material consisting of organic and inorganic components is produced, which is already anisotropic. In the next step, the hybrid material is treated with europium vapour. As a result, it chemically converts to EuO. In this case the nanoparticles' shape is tubular. “This method is interesting because it is not limited to tubular forms. It is also possible to produce rods”, explains Bastian Trepka.

Furthermore, the researchers were able to demonstrate that the magnetic properties of the semiconductor Europium(II) oxide are actually related to the shape of its nanostructure, or rather the anisotropy. After further treatment while trying to generate counter-evidence, the tubular shapes disappeared, resulting in different properties. “The experimental physicists carried out measurements that confirmed the results that had been simulated by the theoretical physicists. This enabled us to develop ideas as to how the structure brings about this particular magnetic behaviour”, explains Bastian Trepka.

“What is really special about our process is the separation of structure control and chemical transformation. We can obtain different shapes from the same material by influencing the shape through process control. This way we will always get the material to assume the shape we need”, says Trepka. In the case of Europium(II) oxide, this is a topotactic nanotransformation that maintains its crystalline direction: it is tubular both before and after treatment.

“An intelligent material with a variety of properties”, says Bastian Trepka of Europium(II) oxide. Above all, it has a simple crystalline structure. “We can explain changes in properties with appeal to the crystalline structures, which are pre-determined”. This is ideal for basic research.

Original publication:
Bastian Trepka, Philipp Erler, Severin Selzer, Tom Kollek, Klaus Boldt, Mikhail Fonin, Ulrich Nowak, Daniel Wolf, Axel Lubk, Sebastian Polarz: Nanomorphology Effects in Semiconductors with Native Ferromagnetism: Hierarchical Europium (II) Oxide Tubes Prepared via a Topotactic Nanostructure Transition. Advanced Materials, 20 November 2017. https://doi.org/10.1002/adma.201703612

Facts:
• Project of the University of Konstanz’s Collaborative Research Centre “Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures”
• The CRC is funded by the German Research Foundation (DFG) with approximately 7.5 million euros.
• It commenced its work on 1 July 2016.
• The CRC is comprised of 15 projects as well as a centre for particle analysis.
• Participating research groups: Functional Inorganic Materials, led by Professor Sebastian Polarz, Magnetic Materials and Spintronics, led by Professor Mikhail Fonin, and Magnetic Materials: Theory and Simulation, led by Professor Ulrich Nowak from the University of Konstanz, as well as the Advanced Methods of Electron Microscopy working group at the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), headed by Dr Axel Lubk.
• Bastian Trepka is a doctoral researcher in Sebastian Polarz’s working group, writing his doctoral thesis on magnetic metal/iron oxide nanoparticles.

Note to editors:
You can download photos here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Bilder/Image54.jpg
Caption: Picture of a hybrid particle taken by a transmission electron microscope. Pictured are the inorganic (dark) and organic (light) lamellas that the particle is made of, as well as the tubular shapes (the low-contrast area in the middle). Through vaporisation with Europium, the hybrid stage can be transformed into pure EuO.
Copyright: University of Konstanz

http://onlinelibrary.wiley.com/store/10.1002/adma.201703612/asset/supinfo/adma20...
Caption:
Series of transmission electron microscope pictures of the inside of the particle.

http://onlinelibrary.wiley.com/store/10.1002/adma.201703612/asset/supinfo/adma20...
Caption:
Computer-based reconstruction of the particle’s geometry.

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>