Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Material That Most Liquids Won't Wet

18.01.2013
A nanoscale coating that's at least 95 percent air repels the broadest range of liquids of any material in its class, causing them to bounce off the treated surface, according to the University of Michigan engineering researchers who developed it.

In addition to super stain-resistant clothes, the coating could lead to breathable garments to protect soldiers and scientists from chemicals, and advanced waterproof paints that dramatically reduce drag on ships.

Droplets of solutions that would normally damage either your shirt or your skin recoil when they touch the new "superomniphobic surface."

"Virtually any liquid you throw on it bounces right off without wetting it. For many of the other similar coatings, very low surface tension liquids such as oils, alcohols, organic acids, organic bases and solvents stick to them and they could start to diffuse through and that's not what you want," said Anish Tuteja, assistant professor of materials science and engineering, chemical engineering and macromolecular science and engineering.

Tuteja is the corresponding author of a paper on the coating published in the current issue of the Journal of the American Chemical Society.

She and her colleagues tested more than 100 liquids and found only two that were able to penetrate the coating. They were chlorofluorocarbons—chemicals used in refrigerators and air conditioners. In Tuteja's lab, in a demonstration, the surface repelled coffee, soy sauce and vegetable oil, as well as toxic hydrochloric and sulfuric acids that could burn skin. Tuteja says it's also resistant to gasoline and various alcohols.

To apply the coating, the researchers use a technique called electrospinning that uses an electric charge to create fine particles of solid from a liquid solution. So far, they've coated small tiles of screen and postage-stamp-sized swaths of fabric.

The coating is a mixture of rubbery plastic particles of "polydimethylsiloxane," or PDMS, and liquid-resisting nanoscale cubes developed by the Air Force that contain carbon, fluorine, silicon and oxygen. The material's chemistry is important, but so is its texture. It hugs the pore structure of whatever surface it's being applied to, and it also creates a finer web within those pores. This structure means that between 95 and 99 percent of the coating is actually air pockets, so any liquid that comes in contact with the coating is barely touching a solid surface.

Because the liquid touches mere filaments of the solid surface, as opposed to a greater area, the developed coating can dramatically reduce the intermolecular forces that normally draw the two states of matter together. These Van der Waals interaction forces are kept at a minimum.

"Normally, when the two materials get close, they imbue a small positive or negative charge on each other, and as soon as the liquid comes in contact with the solid surface it will start to spread," Tuteja said. "We've drastically reduced the interaction between the surface and the droplet."

With almost no incentive to spread, the droplets stay intact, interacting only with molecules of themselves, maintaining a spherical shape, and literally bouncing off the coating.

One classification of liquid that this coating repels is the so-called non-Newtonian category, which includes shampoos, custards, blood, paints, clays and printer inks, for example. These are liquids that change their viscosity depending on the forces applied to them. They differ from the Newtonians, such as water and most other liquids, whose viscosity stays the same no matter the force applied. Viscosity is a measure of a liquid's resistance to flow on the application of force, and it's sometimes thought of as its thickness.

"No one's ever demonstrated the bouncing of low surface tension non-Newtonian liquids," Tuteja said.

The paper is titled "Superomniphobic Surfaces for Effective Chemical Shielding." Doctoral student Shuaijun Pan and postdoctoral researcher Arun Kota, both in materials science and engineering, are the first authors of the paper. Also contributing is Joseph Mabry, in the rocket propulsion division of the Air Force Research Laboratory. The work is funded by the Air Force Office of Scientific Research.

Anish Tuteja: www.mse.engin.umich.edu/people/faculty/tuteja

Abstract of paper: http://pubs.acs.org/doi/abs/10.1021/ja310517s

EDITORS: Watch and link to a video about the new repellent surface at www.youtube.com/watch?v=ICw5k1tDZSk. Photos are available at www.flickr.com/photos/michigan-engineering/sets/72157632483361482

Nicole Casal Moore | Newswise
Further information:
http://www.umich.edu

More articles from Materials Sciences:

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>