Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gel that does not break or dry out

09.11.2017

Developing robust gels full of ionic liquids

Researchers have developed a highly robust gel that includes large amounts of ionic liquid. The research team was led by Professor MATSUYAMA Hideto and Assistant Professor KAMIO Eiji (Kobe University Graduate School of Science, Center for Membrane and Film Technology). These findings were published on November 8 in Advanced Materials.


This is a diagram of the inorganic/organic double network within the strong ion gel, demonstrations of its resilience (compression test, stretching test) and moldability (film, tube, fish shape).

Credit: Kobe University

Ionic liquid is a substance made solely from ions, and it has unique properties - for example, it does not evaporate at normal temperatures or pressures, and it has high thermal stability.

Gels that contain ionic liquid are known as ion gels. With the same properties as ionic liquids, as well as their ability to retain liquid form, they can potentially be used as electrolytes for rechargeable batteries and as membranes for gas separation. However, the low mechanical strength of typical ion gels limits their practical applications.

The research team created a double network within ionic liquid, combining a network of inorganic silica particles with a network of organic polymers. This dramatically improved the resilience of the ion gel, and the gel that they developed can withstand more than 25 MPa of compressive strength without breaking.

The strength of the newly-developed robust ion gel originates in the special interpenetrating double network. When stress is applied to the gel, the brittle silica particle network breaks and dissipates the loaded energy. The physical interaction between the silica particles enables the network to self-recover.

Most of the ionic liquid contained in the gel does not vaporize, so it can be stored in a stable condition for a long time. Even exposing it to a high temperature vacuum does not damage its performance, so it can also be used in high temperature fields.

The gel obtained from this research could be used in CO2 separation membranes or as electrolytes for rechargeable batteries. Our research team will collaborate with businesses to find practical applications for this gel.

They will also continue to analyze the strengthening mechanism in more detail, and aim for a higher-performance, stronger gel by designing the perfect network.

Eleanor Wyllie | EurekAlert!

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>