Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could a computer one day rewire itself?

17.10.2011
Scientists develop new nanomaterial that ‘steers’ current in multiple dimensions

Scientists at Northwestern University have developed a new nanomaterial that can "steer" electrical currents. The development could lead to a computer that can simply reconfigure its internal wiring and become an entirely different device, based on changing needs.

As electronic devices are built smaller and smaller, the materials from which the circuits are constructed begin to lose their properties and begin to be controlled by quantum mechanical phenomena. Reaching this physical barrier, many scientists have begun building circuits into multiple dimensions, such as stacking components on top of one another.

The Northwestern team has taken a fundamentally different approach. They have made reconfigurable electronic materials: materials that can rearrange themselves to meet different computational needs at different times.

"Our new steering technology allows use to direct current flow through a piece of continuous material," said Bartosz A. Grzybowski, who led the research. "Like redirecting a river, streams of electrons can be steered in multiple directions through a block of the material -- even multiple streams flowing in opposing directions at the same time."

Grzybowski is professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science and professor of chemistry in the Weinberg College of Arts and Sciences.

The Northwestern material combines different aspects of silicon- and polymer-based electronics to create a new classification of electronic materials: nanoparticle-based electronics.

The study, in which the authors report making preliminary electronic components with the hybrid material, will be published online Oct. 16 by the journal Nature Nanotechnology. The research also will be published as the cover story in the November print issue of the journal.

"Besides acting as three-dimensional bridges between existing technologies, the reversible nature of this new material could allow a computer to redirect and adapt its own circuitry to what is required at a specific moment in time," said David A. Walker, an author of the study and a graduate student in Grzybowski's research group.

Imagine a single device that reconfigures itself into a resistor, a rectifier, a diode and a transistor based on signals from a computer. The multi-dimensional circuitry could be reconfigured into new electronic circuits using a varied input sequence of electrical pulses.

The hybrid material is composed of electrically conductive particles, each five nanometers in width, coated with a special positively charged chemical. (A nanometer is a billionth of a meter.) The particles are surrounded by a sea of negatively charged atoms that balance out the positive charges fixed on the particles. By applying an electrical charge across the material, the small negative atoms can be moved and reconfigured, but the relatively larger positive particles are not able to move.

By moving this sea of negative atoms around the material, regions of low and high conductance can be modulated; the result is the creation of a directed path that allows electrons to flow through the material. Old paths can be erased and new paths created by pushing and pulling the sea of negative atoms. More complex electrical components, such as diodes and transistors, can be made when multiple types of nanoparticles are used.

The title of the paper is "Dynamic Internal Gradients Control and Direct Electric Currents Within Nanostructured Materials." In addition to Grzybowski and Walker, other authors are Hideyuki Nakanishi, Paul J. Wesson, Yong Yan, Siowling Soh and Sumanth Swaminathan, from Northwestern, and Kyle J. M. Bishop, a former member of the Grzybowski research group, now with Pennsylvania State University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>