Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A coating that prevents barnacles forming colonies

05.10.2011
It is not necessary for an effective anti-fouling coating to release toxins into the environment.

Scientists at the University of Gothenburg have shown that it is instead possible to mix into the coating molecules on which the adult barnacles cannot grow. The result has been published in the scientific journal Biofouling.


Part of the hull of a planing boat that has been painted with a copper-free TF paint with trace amounts of a macrocyclic lactone (Ivermectin). The broad stripe in the centre was painted with TF paint without additive. The boat was used in traffic on the western coast of Sweden for four months in the summer of 2009. Boat owner: Mauritz Palm. Photo: Mats Hulander

Fouling of hulls is a problem for all boat owners, and one of the most difficult organisms to deal with is barnacles. A research group at the Department of Cell and Molecular Biology has therefore studied the biology of barnacles in detail, and focussed on one particularly sensitive stage in the barnacle life cycle.

“When newly matured adult barnacles attempt to penetrate through the coating in order to establish a fixed location to grow, they are extremely sensitive to certain molecules known as ‘macrocyclic lactones’, which are normally produced by certain bacteria”, says Professor Hans-Björne Elwing of the Department of Cell and Molecular Biology at the University of Gothenburg.

A better effect with no toxin released to the environment
When such molecules are mixed into the anti-fouling coating, the treated surface is first colonised by barnacles in the normal way. But as soon as the young barnacles have matured into adults and attempt to establish stronger contact with the surface, they lose contact and probably die. It is also the case that certain brown algae counteract the colonisation by barnacles on the surfaces of leaves in a similar manner.

“Using this discovery, we have managed to create coatings with new binding agents that shut down the release of the macrocyclic lactones into the marine environment. Further, only trace amounts of the macrocyclic lactones are required in the coating to give full effect against barnacles.”

The research group has shown through field trials on leisure craft that the addition of macrocyclic lactones can fully replace copper in coatings used on such craft, on both the eastern and the western coasts of Sweden, and for several seasons.

“While it is true that it is only barnacles that are affected by the additive, the growth of algae and similar organisms can be counteracted relatively simply by other methods.”

The study has been carried out by Emiliano Pinori, Mattias Berglin, Mats Hulander, Mia Dahlström and Hans Elwing at the University of Gothenburg, in collaboration with Lena Brive at the SP Technical Research Institute of Sweden in Borås. The article Multi-seasonal barnacle (Balanus improvisus) protection achieved by trace amounts of a macrocyclic lactone (ivermectin) included in rosin-based coatings has been published in the journal Biofouling.

Bibliographic data:
Title: Multi-seasonal barnacle (Balanus improvisus) protection achieved by trace amounts of a macrocyclic lactone (ivermectin) included in rosin-based coatings
Jounral: Biofouling
Authors: Emiliano Pinoriab, Mattias Berglina, Lena M. Briveb, Mats Hulandera, Mia Dahlströma & Hans Elwinga*
For further information, please contact:
Hans-Björne Elwing, Department of Cell and Molecular Biology, University of Gothenburg
Tel: +46 31 786 2562
Mobile: +46 733 604607
hans.elwing@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.tandfonline.com/doi/abs/10.1080/08927014.2011.616636

More articles from Materials Sciences:

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

nachricht High entropy alloys hold the key to studying dislocation avalanches in metals
16.10.2018 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>