Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

4D electric circuit network with topology

20.05.2020

In recent years, topology has emerged as an important tool to classify and characterize properties of materials. It has been found that many materials exhibit a number of unusual topological properties, which are unaffected by deformations, e.g., stretching, compressing, or twisting.

These topological properties include quantized Hall currents, large magnetoresistance, and surface excitations that are immune to disorder. It is hoped that these properties could be utilized for future technologies, such as, low-power electronics, ultrafast detectors, high-efficiency energy converters, or for quantum computing.


(a) The 4D circuit lattice realized on a 2D plane. A pair of Weyl points with the same chirality are localized on the three-dimensional boundary. (b) The bulk band structures and the boundary Weyl states (red lines). (c) Schematic of the chirality of Weyl states.

Credit: ©Science China Press

More recently, topology has been applied also to synthetic materials, e.g., photonic crystals or networks of electric circuits. These synthetic materials have several benefits compared to their natural counterparts.

For example, the topology of their excitations (i.e., their excitation bands) can be precisely controlled and manipulated. In addition, due to their long-ranged lattice connectivity, synthetic materials can realize topological excitations in dimensions greater than three.

Hence, synthetic materials, and in particular electric circuit networks, offer the possibility to realize a number of interesting topological properties that are not accessible in real materials.

Rui Yu from Wuhan University, Yuxin Zhao from Nanjing University, and Andreas Schnyder from the Max-Planck-Institute Stuttgart have now demonstrated this potential by explicitly constructing an electric circuit network that simulates a four-dimensional (4D) topological insulator with a classical time-reversal symmetry [Fig. 1(a)].

Topological insulators are materials which are insulating in the bulk volume, but highly conducting at the surface, due gapless surface excitations. Similarly, the simulated 4D topological insulator has an excitation gap in the bulk volume, within which there exists a pair of surface excitations [Fig. 1(b)].

These 3D surface excitations have a linear dispersion, and more interestingly, they are of Weyl type with the same handedness, i.e., they have internal degrees of freedom that are spinning following the same left or right-handed rule with respect to their propagating direction [Fig. 1(c)].

They are of topological origin and are unlike any surface excitation found in conventional materials. Topology dictates that these 3D Weyl excitations must come in pairs and that they are robust to disorder and deformations.

The authors have performed detailed numerical simulations of the topological circuit network and have shown that the 3D Weyl excitations can be readily observed in frequency-dependent measurements.

The authors' work demonstrates that topological excitations can be easily realized on commercially available circuit boards or integrated-circuit wafers composed of inductors and capacitors.

It paves the way for realizing arbitrary types of topological surface excitations, for example, so-called Dirac or Majorana excitations of dimension two, three, or even higher. The electric-circuit implementation of topological excitations has the advantage of being simple, easily reconfigurable, and allowing a high degree of control. This will make it possible to study in the future topological phase transitions, non-linear effects, out-of-equilibrium phenomena, and quantum open systems (e.g., non-Hermitian systems).

###

See the article:

Rui Yu, Y X Zhao, Andreas P Schnyder
4D spinless topological insulator in a periodic electric circuit
Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa065
https://doi.org/10.1093/nsr/nwaa065

Media Contact

Andreas P Schnyder
a.schnyder@fkf.mpg.de

http://www.scichina.com/ 

Andreas P Schnyder | EurekAlert!
Further information:
http://dx.doi.org/10.1093/nsr/nwaa065

More articles from Materials Sciences:

nachricht Smart textiles made possible by flexible transmission lines
03.06.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht A remote control for neurons
02.06.2020 | College of Engineering, Carnegie Mellon University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>