Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2-D layered devices can self-assemble with precision

06.07.2017

Squid-inspired proteins can act as programmable assemblers of 2D materials, like graphene oxide, to form hybrid materials with minute spacing between layers suitable for high-efficiency devices including flexible electronics, energy storage systems and mechanical actuators, according to an interdisciplinary team of Penn State researchers.

"2D layered materials can be made by vacuum (chemical vapor) deposition," said Melik C. Demirel, Pierce Development Professor and professor of engineering science and mechanics . "But the process is expensive and takes a long time. With chemical vapor deposition the problem also is we can't scale up."


Video shows layered, self-assembled graphene oxide sheets with synthetic proteins patterned on squid ring teeth made into an actuator with substantial curvature. The second segment shows the same device using graphene oxide only. There is no movement.

Credit: Melik Demirel, Penn State

Materials like graphene oxide are composed of single layers of molecules connected in a plain. While the length and breadth of the sheet can be anything, the height is only that of one molecule. To make usable composites and devices, 2D materials must be stacked either in piles of identical sheets or combinations of sheets of different composition stacked to specification.

Together with Mauricio Terrones, professor of physics, chemistry and materials science and engineering, and director of 2D Atomic Center, Penn State, Demirel and his team are currently looking at stacking sheets of identical materials using a solvent approach that self assembles.

"Using the solvent approach the molecules are self-assembling, self-healing and flexible," said Demirel. "Currently we are stacking identical layers, but they don't have to be the same."

To make these molecular composites using solvent technology, the researchers combined the sheets of graphene oxide with synthetic polymers patterned after proteins found in squid ring teeth. One end of the protein strand attaches to the edge of a graphene oxide sheet and the other end attaches to the edge of another graphene dioxide sheet.

The sheets of graphene oxide self-assemble to stack up with proteins linking the edges of the sheets. The length of these tandem repeat proteins -- their molecular weight -- determines the distance between sheets.

"Up until now, no one has been able to stack composite layers closer than 1 nanometer," said Demirel. "We can stack them at atomistic precision with 0.4, 0.6 or 0.9 nanometer resolution by choosing the right molecular weight of the same protein. Respectively."

The researchers tested this material's ability to make tiny devices by creating bimorph thermal actuators. A bimorph activator is a small piece of material made from two different layers and placed perpendicular to a surface. When activated, usually by an electric current, the bimorph actuator bends from the perpendicular.

The researchers report in the July issue of Carbon that "these novel molecular composite bimorph actuators can facilitate thermal actuation at voltages as low as about 2 volts, and they boast energy efficiencies 18 times better than regular bimorph actuators assembled using bulk graphene oxide and tandem repeat films." They believe that higher molecular weight proteins could reach much higher displacements.

###

Other researchers on this project, all from Penn State, include Mert Vural, post-doctoral fellow; Abdon Pena-Francesch, graduate student; and Huihun Jung, graduate student, all in engineering science and mechanics; Yu lei, graduate student in physics; and Benjamin Allen, research associate, the Huck Institutes of Life Sciences and biochemistry and molecular biology. The U.S. Army Research Office funded this work.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>