Webb Telescope's NIRCam engineering test unit arrives at NASA Goddard

The Near Infrared Camera (NIRCam) will be the primary imager on the Webb telescope and will measure light in the spectrum in the wavelength range of 0.6 to 5 microns. The unit that arrived at Goddard is actually an engineering test unit, and not the actual NIRCam that will fly aboard the Webb telescope.

The Near Infrared Camera (NIRCam) is being built by a team at University of Arizona (UoA) and Lockheed Martin's Advanced Technology Center, Palo Alto, Calif. and led by Prof. Marcia Rieke at UoA. Lockheed Martin built the NIRCam Engineering test unit (ETU). An ETU is basically a replica of the flight unit that can perform certain flight functions which are tested at NASA Goddard before flight delivery.

At NASA Goddard, the NIRCam will undergo one year's worth of testing to verifiy instrument interfaces and integration and test processes. The ETU will be used to practice installation into the Integrated Science Instrument Module (ISIM) structure. The ISIM is the heart of the Webb telescope, the unit that will house the four main Webb instruments. Measurements will also be made of the precise location of the NIRCam instrument within ISIM to later aid in alignment of the flight model. The NIRCam is a science instrument but also an Optical Telescope Element wavefront sensor, which provides something similar to instant LASIK vision correction.

The actual flight unit is currently already being built, and the outcome of the tests may lead to a change in handling procedures of the flight NIRCam, but not a change in the flight construction.

The actual NIRCam will study infrared light. Because the universe is expanding, light from the earliest galaxies has been stretched, or “redshifted,” from visible light into infrared light. Humans can't see infrared light, but can perceive it as heat. NIRCam will be able to visualize infrared light, making it essential to examining the early phases of star and galaxy formation, and studying the shapes and colors of distant galaxies. NIRCam will also help astronomers learn the age of stars in nearby galaxies.

“The NIRCam ETU includes one fully functional optical channel and was used to demonstrate the hardware to be used in aligning the Webb telescope's mirror segments,” said Marcia Rieke, Professor of Astronomy at the University of Arizona, and principal investigator for the near-infrared camera (NIRCam).

The James Webb Space Telescope will detect the first light emitting galaxies and star clusters to form in the Universe after the Big Bang. The NIRCam design is optimized for finding these “First Light” sources. The camera also includes features that will make it a wonderful tool for studying star formation in the Milky Way Galaxy and for discovering and characterizing planets around other stars.

Diane Yun NIRCam Instrument Manager at NASA Goddard,”A lot of hard work went into developing and testing the NIRCam ETU. We are excited to have it here at Goddard for ISIM testing. This brings us one step closer to achieving the science goals of NIRCam and the Webb telescope.”

The actual NIRCam flight instrument is going to arrive at NASA Goddard in 2011 for testing and incorporation into the Webb telescope.

The Webb telescope is a partnership between NASA, the European Space Agency and the Canadian Space Agency.

For related images and video, visit:
http://www.nasa.gov/topics/universe/features/nircam-unit.html
For more information on the James Webb Space Telescope, visit:
www.jwst.nasa.gov

Media Contact

Lynn Chandler EurekAlert!

More Information:

http://www.nasa.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors