Better synchronization helps fish deal with predator threat

Researchers in the York Centre for Complex Systems Analysis (YCCSA), based in the University's Department of Biology, used a combined computer simulation and experimental study of group behaviour to discover that shoaling fish co-ordinate their movements more frequently when under threat.

They 'update' their behaviour more often because by moving in a more coherent fashion with shoal members, individual fish are able to reduce the risk of being targeted by predators as the 'odd one out'.

The model predicts that higher updating frequency, caused by threat, leads to more synchronized group movement with both speed and nearest neighbour distributions becoming more uniform.

The research is published today in the latest issue of Proceedings of the Royal Society B. The study is supported by the Natural Environment Research Council.

The scientists suggest that the so-called 'oddity effect' could be the driving force for the behavioural changes. The computer model measures speed and distance distributions and provides a method of assessing stress levels of collectively grouping animals in a remotely collectable and non-obtrusive way.

Dr Jamie Wood, of YCCSA, said: “We find that as grouping animals feel more threatened, they monitor their fellows more frequently which results in better synchronization.

“Closely coordinated movement has the advantage that predators find it more difficult to single out a single target for their prey. Our work may help to explain how tightly bound fish shoals emerge and determine how agitated animals moving in groups are at any given moment.”

The research also involved scientists at the Institute of Integrative and Comparative Biology at the University of Leeds and the Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin.

Media Contact

David Garner EurekAlert!

More Information:

http://www.york.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors