Scotch tape finds new use as grasping 'smart material'

The researchers used Scotch tape to create a tiny grasping claw that collects droplets of water, an innovation could be used to collect water samples for environmental testing. The material, seen here, becomes flexible when exposed to humidity and returns to its original shape when dry. (Manuel Ochoa, Purdue University) A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers.jpg<br><br>Credit: Manuel Ochoa, Purdue University<br>

Researchers used a laser to form slender half-centimeter-long fingers out of the tape. When exposed to water, the four wispy fingers morph into a tiny robotic claw that captures water droplets.

The innovation could be used to collect water samples for environmental testing, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

The Scotch tape – made from a cellulose-acetate sheet and an adhesive – is uniquely suited for the purpose.

“It can be micromachined into different shapes and works as an inexpensive smart material that interacts with its environment to perform specific functions,” he said.

Doctoral student Manuel Ochoa came up with the idea. While using tape to collect pollen, he noticed that it curled when exposed to humidity. The cellulose-acetate absorbs water, but the adhesive film repels water.

“So, when one side absorbs water it expands, the other side stays the same, causing it to curl,” Ziaie said.

A laser was used to machine the tape to a tenth of its original thickness, enhancing this curling action. The researchers coated the graspers with magnetic nanoparticles so that they could be collected with a magnet.

“Say you were sampling for certain bacteria in water,” Ziaie said. “You could drop a bunch of these and then come the next day and collect them.”

Findings will be detailed in a presentation during a meeting of the Materials Research Society in Boston from Sunday (Nov. 25) to Nov. 30. Experiments at Purdue's Birck Nanotechnology Center were conducted by Ochoa, doctoral student Girish Chitnis and Ziaie.

The grippers close underwater within minutes and can sample one-tenth of a milliliter of liquid.

“Although brittle when dry, the material becomes flexible when immersed in water and is restored to its original shape upon drying, a crucial requirement for an actuator material because you can use it over and over,” Ziaie said. “Various microstructures can be carved out of the tape by using laser machining. This fabrication method offers the capabilities of rapid prototyping and batch processing without the need for complex clean-room processes.”
An animated GIF of the gripper closing is available at https://engineering.purdue.edu/ZBML/img/research/plain-gripper-closing.gif

The materials might be “functionalized” so that they attract specific biochemicals or bacteria in water.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Babak Ziaie, 765-494-0725, bziaie@purdue.edu

Manuel Ochoa, ochoam@purdue.edu

Related websites:

Babak Ziaie: https://engineering.purdue.edu/ECE/People/profile?resource_id=2839

Birck Nanotechnology Center: http://www.purdue.edu/discoverypark/nanotechnology/

Other animated GIFs using the material to create a mini-Purdue logo:
https://engineering.purdue.edu/ZBML/img/research/pu-tape-1-small.gif
https://engineering.purdue.edu/ZBML/img/research/pu-tape-2-small.gif
IMAGE CAPTION:
The researchers used Scotch tape to create a tiny grasping claw that collects droplets of water, an innovation could be used to collect water samples for environmental testing. The material, seen here, becomes flexible when exposed to humidity and returns to its original shape when dry. (Manuel Ochoa, Purdue University)

A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers.jpg

IMAGE CAPTION:

The graspers were coated with magnetic particles, which could allow researchers to retrieve the devices in the field by using a magnet. (Manuel Ochoa, Purdue University)

A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers2.jpg

ABSTRACT

Laser-Micromachined Magnetically-Functionalized Hygroscopic Bilayer: A Low-Cost Smart Material

Manuel Ochoa 1,4, Girish Chitnis 2,4, and Babak Ziaie 1,3,4*

1School of Electrical and Computer Engineering, Purdue University

2School of Mechanical Engineering

3 Weldon School of Biomedical Engineering

4Birck Nanotechnology Center

In this paper, we describe the design, fabrication, and characterization of magnetically functionalized humidity-responsive bilayers. We investigated two different ferrofluid embedded material structures: 1) cellulose-acetate sheet bonded to an acetate-backed adhesive (3M Scotch® GiftWrap Tape) (CA/GWT) and 2) a commercially available acetate-backed adhesive (3M Scotch® MagicTape) (MT). Cantilevers and other mechanical structures such as grippers were fabricated using laser micro-machining and exposed to humidity and magnetic fields. Such bilayers take advantage of the hygroscopic properties of cellulose acetate for their humidity response while simultaneously allowing one to remotely manipulate the structure using a magnetic field. The maximum radius of curvature in a humidity saturated environment for a CA/GWT cantilever (2 mm × 19 mm × 157 µm) was measured to be 7 mm, whereas the MT showed a smaller radius of curvature (

Media Contact

Emil Venere EurekAlert!

More Information:

http://www.purdue.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors