The when, where, why of road accidents

“When, where, how, why and to whom do road accidents and injuries occur?” These are the sorts of things researchers in the European TRACE project have been asking in their 30-month study of traffic accident causation in Europe.

To get a full aetiological picture of road accidents in Europe, TRACE had to draw on vast data from across Europe and the resourcefulness of its 22 partners in nine countries, including major carmakers like Renault and PSA, industry specialists and research centres.

According to the project, the idea was to learn as much as possible about the nature of risk factors, groups at risk, and specific “conflict driving and accident situations,” and to estimate the safety benefits of a selection of technology-based safety solutions. The various final results of the research should soon be finalised and published, but ICT Results is privy to some highlights.

Small input, big output

Even the smallest improvement of an active or passive safety feature results in better safety, according to the TRACE team who has evaluated safety packages in today’s vehicles – five-star Euro NCAP features, Emergency Brake Assist (EBA), Electronic Stability Control (ESC), or combinations.

“In general, the safety gains are even higher for higher injury severity levels,” says Yves Page who was TRACE’s coordinator while working at the Laboratory of Accidentology, Biomechanics and Studies of Human Behaviour at PSA Peugeot Citroën Renault.

The difference between a five-star rated car fitted with EBA and ESC and a four-star rated one without these features is striking, he suggests. So-called “injury accidents” would be reduced by 47%, he says, while severe to fatal accidents would be cut by as much as 70%.

Full and future picture

TRACE also scanned the future-scape and evaluated the expected benefits of a number of promising safety and embedded systems, such as tyre pressure monitoring, lane keeping support, cornering brake control, traffic sign recognition, intelligent speed adaptation, rear-light brake force display, ‘alcolock’ key, drowsy driver detection, blind-spot detection, and more.

The greatest additional benefits – a 6-10% improvement in terms of injuries – are expected from speed adaptation systems and systems related to collision/crash warnings and prevention, reports TRACE. The drowsy driver and alcohol detection lockout features were appreciable in their benefit, while systems like tyre deflation monitoring and advanced rear- and front-light solutions were less prominent.

TRACE was funded by the ICT strand of the EU’s Sixth Framework Programme for research.

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors