Preference for Oranges Protects Fruit Flies from Parasites

An orange is an ideal oviposition substrate for fruit flies because the parasitoid wasp Leptopilina boulardii, which lays its eggs inside Drosophila larvae, is repelled by the odor of citrus.<br><br>M. C. Stensmyr / Lund University<br>

The fruit fly Drosophila melanogaster is pickier than previously thought when it comes to when it comes to choosing the best site for egg-laying. Using behavioral assays, researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, and their colleagues in Nigeria discovered that the insects prefer the smell of citrus.

This preference is controlled by one single odorant receptor. In nature, laying eggs on oranges is advantageous, because parasitoid wasps feeding on the larvae of Drosophila avoid citrus fruits. The same smell that is attractive to the flies also repels the wasps.

The scientists used imaging techniques to visualize the activity in certain areas of the flies’ brains while these were stimulated with different odors, and they were able to localize and identify the receptor for citrus. Flies in which this receptor was silenced were no longer able to distinguish oranges from other fruits. (Current Biology, December 5, 2013, DOI 10.1016/j.cub.2013.10.047)

For egg-laying insects, selecting the best site to lay eggs is crucial for the survival of the eggs and larvae. Once the eggs have been deposited, the maternal care of the female flies ends: eggs and larvae are henceforth at the mercy of their environment; their range is usually limited. Suitable and sufficient food sources for the hungry larvae and protection against predators and parasites are important selection criteria for the best oviposition substrates.

Multiple choice experiment shows fruit flies like citrus

First, Marcus Stensmyr, Bill Hansson and their colleagues in the Department of Evolutionary Neuroethology tested the preferred egg-laying substrates of fruit flies by letting insects select among different ripe fruits. They excluded damaged fruits to make sure that the smell of yeast would not influence the flies’ choices (yeast is the flies’ main food source). An analysis of the behavioral assays showed that female flies preferred to lay their eggs on oranges. Further selection experiments helped to identify the odor that was the crucial factor for the flies’ choice: the terpene limonene. Flies were not attracted to limonene-deficient oranges. On the other hand, they were immediately drawn to fruits that had been spiked with synthetic limonene. Although citrus is not an attractant for the flies, it elicits egg laying. Interestingly, evolution has split the perception of odors into two channels: those that guide flies to their food source and those that elicit the oviposition behavior.

A single odorant receptor controls preference for oranges

By performing electrophysiological measurements, the scientists were able to quantify the flies‘ responses to limonene and to localize and identify the olfactory sensory neurons responsible for detecting citrus. Subsequently, they tested the flies’ responses to 450 different odors. Apart from limonene, valencene, another component of citrus fruit, also triggered a strong response. Valencene distinguishes the scent of oranges from that of lemons; lemons are less favored by flies because of their acidity. Compounds that activated these particular sensory neurons induced oviposition. In vivo calcium imaging of the flies’ brains stimulated with citrus enabled the researchers to identify the corresponding odorant receptor.

“It is fascinating that a complex behavior, such as choosing an egg-laying site, can be broken down into multiple sub-routines that have such a simple genetic basis,” says Marcus Stensmyr. “We were quite surprised that by silencing just this single odorant receptor, flies could no longer localize their preferred egg-laying substrate.”

Citrus protects Drosophila larvae against parasites

In nature, a considerable proportion of Drosophila larvae are killed by enemies, mainly parasitoid wasps that lay their eggs inside the larvae. It is astonishing that these wasps are repelled by citrus odors, although citrus should guide them to their food source: Drosophila larvae. The parasitoid wasp Leptopilina boulardii, which specializes in Drosophila melanogaster, is repelled by valencene. In a further choice experiment, the wasps had to choose larvae from two substrates − one with valencene and one without − and they clearly preferred the larvae on the valencene-free substrate. It is still unknown why the wasps avoid citrus. However, it is certain that female fruit flies have learned to let their offspring grow on citrus fruits, because there the larvae are better protected against parasites.

These research results provide important information about the criteria that insects use to select an oviposition site that guarantees the improved development of their offspring. Marcus Stensmyr is convinced that “there are similar processes in other insects and ways to manipulate them.” These insights may lead to new ways to control insects, especially those that destroy crops or transfer diseases. [AO]

Original Publication:
Dweck, H. K. M., Ebrahim, S. A. M., Kromann, S., Bown, D., Hillbur, Y., Sachse, S., Hansson, B. S., Stensmyr, M.C. (2013). Olfactory Preference for Egg Laying on Citrus Substrates in Drosophila. Current Biology, DOI 10.1016/j.cub.2013.10.047

http://dx.doi.org/10.1016/j.cub.2013.10.047

Further Information:
Prof. Dr. Bill S. Hansson, MPI for Chemical Ecology, hansson@ice.mpg.de, Tel. +49 3641 57-1401

Dr. Marcus C. Stensmyr, Lund University, marcus.stensmyr@biol.lu.se

Contact and picture requests:
Angela Overmeyer M.A., MPI for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Tel.+ 49 3641 57-2110, overmeyer@ice.mpg.de

Download of high resolution pictures on http://www.ice.mpg.de/ext/735.html

Media Contact

Angela Overmeyer Max-Planck-Institut

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors