Natural Solar Collectors on Butterfly Wings Inspire More Powerful Solar Cells

In the study, Di Zhang and colleagues note that scientists are searching for new materials to improve light-harvesting in so-called dye-sensitized solar cells, also known as Grätzel cells for inventor Michael Grätzel. These cells have the highest light-conversion efficiencies among all solar cells — as high as 10 percent.

The researchers turned to the microscopic solar scales on butterfly wings in their search for improvements. Using natural butterfly wings as a mold or template, they made copies of the solar collectors and transferred those light-harvesting structures to Grätzel cells. Laboratory tests showed that the butterfly wing solar collector absorbed light more efficiently than conventional dye-sensitized cells. The fabrication process is simpler and faster than other methods, and could be used to manufacture other commercially valuable devices, the researchers say. – MTS

ARTICLE #2 FOR IMMEDIATE RELEASE
“Novel Photoanode Structure Templated from Butterfly Wing Scales”
DOWNLOAD FULL TEXT ARTICLE:
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/cm702458p
CONTACT:
Di Zhang, Ph.D.
State Key Lab of Metal Matrix Composites
Shanghai Jiao Tong University
Shanghai, People’s Republic of China
Phone: 86-021-3420 2634
Fax: 86-021-3420-2749
Email: zhangdi@sjtu.edu.cn

Media Contact

Michael Woods Newswise Science News

More Information:

http://www.acs.org

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors