Nano-towers fire off single photons

At the heart of the concept are tiny towers, made from semiconducting material, at the University of Würzburg's Department of Applied Physics. They are around ten micrometers in height, with a diameter of just one to two micrometers – a human hair is roughly a hundred times thicker.

Contained inside the towers are special structures capable of emitting light: these are known as quantum dots, and their electronic and optical properties can be customized during production. Quantum dots, in the same way as single atoms, possess precisely defined energy states. This enables them to send out photons (light particles) with an exact amount of energy.

Single photons can be generated

What is special about the Würzburg quantum dot towers is that “with them it is possible to 'fire off' single photons in a targeted fashion. It is structural elements like these that are needed for the tap-proof transmission of data in the field of quantum cryptography,” explains Würzburg physicist Stephan Reitzenstein.

However, to date, the production of single photons in these structures has only been achieved with temperatures well below minus 100 degrees Celsius. So, there are still hurdles to overcome before the concept can be routinely applied.

Publication in Nature Photonics

Thanks to the tiny towers developed in Würzburg, there are now new insights into quantum dots. Physicists on Professor Peter Michler's team (Institute of Semiconductor Optics and Functional Interfaces of the University of Stuttgart) have published these jointly with their Würzburg colleagues in the journal Nature Photonics.

Those involved in the publication from Würzburg's Department of Applied Physics were Stephan Reitzenstein, Andreas Löffler, Sven Höfling, and Professor Alfred Forchel. The Stuttgart team included Serkan Ates, Sven M. Ulrich, Ata Ulhaq, and Professor Peter Michler.

New tool for analyzing quantum dots

The Stuttgart physicists studied the Würzburg nano-towers as part of a venture sponsored by the German Research Foundation (DFG). “The towers serve as a new tool for analyzing the properties of quantum dots in a way never seen before,” explains Reitzenstein.

The Stuttgart team discovered an unexpected effect, known as non-resonant coupling. This suggests strong light-matter interactions in such solid-state systems. According to Peter Michler, “this will have major repercussions on the design and functionality of future quantum emitters that are based on quantum dots.”

Structure of the Würzburg towers

The new insights were made possible by the special structure and highly optimized production of the towers. The quality of the towers realized at the University of Würzburg is outstanding by global comparison.

The tiny structures consist of a sophisticated sequence of layers made from the semiconductors aluminum arsenide and gallium arsenide. “Their special structure makes them into high-quality optical resonators, which confine single photons on a light wavelength scale in all three spatial dimensions,” says Stephan Reitzenstein.

Embedded in the center of the towers are some 100 quantum dots made from the semiconducting material indium gallium arsenide. Reitzenstein: “Using special spectroscopic procedures, however, a single quantum dot can purposefully be brought into resonance with the optical mode of a tower in order to conduct fundamental physics experiments on the interaction between light and matter.”

Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy, S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Lo?ffler, S. Ho?fling, A. Forchel, and P. Michler, Nature Photonics, published online on Nov. 22, 2009, doi:10.1038/nphoton.2009.215

Contact

Dr. Stephan Reitzenstein, University of Würzburg, phone +49 931 31-85116, stephan.reitzenstein@physik.uni-wuerzburg.de

Dr. Sven M. Ulrich, University of Stuttgart, phone +49 711 685-65226, s.ulrich@ihfg.uni-stuttgart.de

Media Contact

Robert Emmerich idw

More Information:

http://www.uni-stuttgart.de

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors