Metastatic movements in 3-D

On 2D surfaces, cells may migrate randomly, or be strongly unidirectional. Integrins, which link the cell to the extracellular matrix, are known to influence the mode of migration, but exactly how has been unclear.

Recent work has suggested that an integrin called a5b1 drives random movement, while an integrin called avb3 has been associated with unidirectional migration—the balance of activity between the two determining the type of movement. To further explore the contribution of a5b1 to random migration, the authors thus blocked avb3.

The treated cells changed their mode of migration from unidirectional to random, and their ability to invade 3D gels increased. The changed behavior correlated with an increase in trafficking of a5b1 from intracellular compartments to anterior membrane protrusions.

But this increase in trafficking did not significantly alter a5b1's contribution to cell adhesion—the ease with which cells were dislodged from a spinning disk increased as the amount of avb3 was reduced, but was not correlated with any change in a5b1. This suggested that the cells' increased invasive ability was due to alteration in some other property. That property turned out to be activation of a proinvasive pathway headed by a kinase called Akt.

In avb3-blocked cells, a5b1 became associated with epidermal growth factor receptor 1 (EGFR1), which increased EGFR1's abundance at the membrane protrusions, as well as its autophosphorylation. Because EGFR1 is an activator of the Akt pathway, hey presto, the cells took on some new moves.

Media Contact

Sati Motieram EurekAlert!

More Information:

http://www.rockefeller.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors