Large molecules need more help to travel through a nuclear pore into the cell nucleus

Model of a large molecule (blue, PDB ID:2MS2), bound to multiple transporter proteins (orange dots) that interact with the nuclear pore complex barrier (gray, EMD-8087), a process essential for import into the cell nucleus
Ill./©: Giulia Paci (CC BY 4.0)

Model systems based on virus capsids have shown how large biomolecules are able to penetrate a cell nucleus / The larger the molecule, the more nuclear localization signals are needed

A new study in the field of biophysics has revealed how large molecules are able to enter the nucleus of a cell. A team led by Professor Edward Lemke of Johannes Gutenberg University Mainz (JGU) has thus provided important insights into how some viruses, for example, can penetrate into the nucleus of a cell, where they can continue to proliferate and infect others.

They have also demonstrated that the efficiency of transport into a cell decreases as the size of the molecules increases and how corresponding signals on the surface can compensate for this. “We have been able to gain new understanding of the transport of large biostructures, which helped us develop a simple model that describes how this works,” said Lemke, a specialist in the field of biophysical chemistry. He is Professor of Synthetic Biophysics at JGU and Adjunct Director of the Institute of Molecular Biology (IMB) in Mainz.

Nuclear localization signals facilitate rapid entry

A typical mammalian cell has about 2,000 nuclear pores, which act as passageways from the cell cytoplasm into the cell nucleus and vice versa. These pores in the nuclear envelope act as gatekeepers that control access and deny entry to larger molecules of around five nanometers in diameter and greater. Molecules that have certain nuclear localization sequences on their surface can bind to structures within nuclear pores, allowing them to enter into the nucleus rapidly.

“Nuclear pores are remarkable in the diversity of cargoes they can transport. They import proteins and viruses into the nucleus and export ribonucleic acids and proteins into the cell cytoplasm,” explained Lemke, describing the function of these pores. “Despite the fundamental biological relevance of the process, it has always been an enigma how large cargoes greater than 15 nanometers are efficiently transported, particularly in view of the dimensions and structures of nuclear pores themselves.”

With this is mind and as part of their project, the researchers designed a set of large model transport cargoes. These were based on capsids, i.e., protein “shells” in viruses that enclose the viral genome. The cargo models ranging from 17 to 36 nanometers in diameter were then fluorescently labeled, allowing them to be observed on their way through cells.

Capsid models without nuclear localization signals on their surface remained in the cell cytoplasm and did not enter the cell nucleus. As the number of nuclear localization signals increased, the accumulation of the model capsid in the nucleus became more efficient. But even more interestingly, the researchers found that the larger the capsid, the greater was the number of nuclear localization signals needed to enable efficient transport into the nucleus.

The research team looked at a range of capsids of various viruses including the hepatitis B capsid, the largest cargo used in this study. But even increasing the number of nuclear localization signals to 240 did not result in the transport of this capsid into the nucleus. This corresponds with the results of earlier studies of the hepatitis B virus that have indicated that only the mature infectious virus is capable of passage through a nuclear pore into the nucleus.

Cooperation enabled the development of a mathematical model

In cooperation with Professor Anton Zilman of the University of Toronto in Canada, a mathematical model was developed to shed light on the transport mechanism and to establish the main factors determining the efficiency of transport. “Our simple two-parameter biophysical model has recreated the requirements for nuclear transport and revealed key molecular determinants of the transport of large biological cargoes on cells,” concluded first author Giulia Paci, who carried out the study as part of her PhD thesis at the European Molecular Biology Laboratory (EMBL) in Heidelberg.

Image:
https://download.uni-mainz.de/presse/10_imp_biophysik_molekuele_zellkern_transpo…
Model of a large molecule (blue, PDB ID:2MS2), bound to multiple transporter proteins (orange dots) that interact with the nuclear pore complex barrier (gray, EMD-8087), a process essential for import into the cell nucleus
Ill./©: Giulia Paci (CC BY 4.0)

Related links:
https://www.embl.de/research/units/scb/lemke/index.html – Lemke Group “High Resolution Studies of Protein Plasticity” at the European Molecular Biology Laboratory (EMBL)
http://www.spp2191.com/ – DFG Priority Program 2191: Molecular Mechanisms of Functional Phase Separation
https://www.grc.uni-mainz.de/prof-edward-a-lemke/ – GRC fellow Professor Edward A. Lemke

Read more:
https://www.uni-mainz.de/presse/aktuell/11211_ENG_HTML.php – press release “ERC Advanced Grant for Edward Lemke for the engineering of designer organelles in cells” (9 April 2020)
https://www.uni-mainz.de/presse/aktuell/7942_ENG_HTML.php – press release “Designer organelles in cells produce synthetic proteins” (29 March 2019)
https://www.uni-mainz.de/presse/aktuell/5059_ENG_HTML.php – press release “Dark proteome as the focus of a new Priority Program funded by the German Research Foundation” (1 June 2018)

Wissenschaftliche Ansprechpartner:

Professor Dr. Edward Lemke
Synthetic Biophysics
Institute of Molecular Physiology
Johannes Gutenberg University Mainz
and
Institute of Molecular Biology (IMB)
55099 Mainz, GERMANY
e-mail: edlemke@uni-mainz.de
http://www.lemkelab.com
https://lemkelab.uni-mainz.de/about-edward-lemke/
https://www.imb.de/research/lemke/research/

Originalpublikation:

G. Paci et al., Molecular determinants of large cargo transport into the nucleus, eLife, 21 July 2020,
DOI: 10.7554/eLife.55963
https://elifesciences.org/articles/55963

Media Contact

Kathrin Voigt Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors