Invasion without a stir

“Based on our data, the molecular mechanism of infection employed by Salmonella has to be revised,” says Klemens Rottner, head of the HZI research group “Cytoskeleton Dynamics”. The group's results have now been published in the current issue of the scientific journal “Cellular Microbiology”.

Salmonella are highly adaptive bacteria. They can live in the presence and absence of oxygen and thus propagate in the gut. The ingestion by humans occurs mainly via contaminated egg dishes such as mayonnaise or raw milk products as well as meat or sausages. Infections with Salmonella lead to severe diarrhea and fever, particularly in patients harbouring a compromised immune system.

Although Salmonella are long-known pathogens, the precise mechanisms of infection are incompletely understood. The bacteria inject a protein cocktail using a “molecular syringe” into host cells, leading to dramatic rearrangements of cytoskeletal filaments below the cell membrane. As a result, membrane waves are formed, which enclose the bacteria, and apparently facilitate their invasion. Those characteristic membrane waves are called “ruffles”, the process is known as “ruffling”. Until now, researchers regarded the formation of these ruffles as absolutely essential for bacterial entry.

In a collaborative effort, HZI research groups “Cytoskeleton dynamics” and “Signalling and Motility” now succeeded in shedding new light on the infection strategy of Salmonella. “We wanted to improve our mechanistic understanding of how Salmonella invade their host cells,” says Jan Hänisch, who performed most experiments in the course of his PhD-thesis. Cells that were engineered to lack those membrane ruffles normally induced during Salmonella infection still engulfed the bacteria. “We showed for the first time that membrane ruffles are not essential for the bacteria to penetrate the host cell membrane.” Since ruffling was used so far as signature of successful host cell invasion by this pathogen, the usefulness of such methods has to be reconsidered.

Finally, the researchers discovered a new piece in the puzzle of Salmonella entry, called WASH. This novel factor promotes bacterial invasion by contributing to the formation of host cell cytoskeletal filaments important for entry. “Our results have significant impact on the molecular and mechanistic understanding of the infection strategy used by this pathogen,” says Rottner, “and on the development of novel strategies to screen for potential inhibitors of the entry process in the future.”

Original article: Molecular dissection of Salmonellen-induced membrane ruffling versus invasion. Hänisch J, Ehinger J, Ladwein M, Rohde M, Derivery E, Bosse T, Steffen A, Bumann D, Misselwitz B, Hardt WD, Gautreau A, Stradal TE, Rottner K. Cell Microbiol. (2010) 12(1), 84. doi:10.1111/j.1462-5822.2009.01380.x

Media Contact

Dr. Bastian Dornbach EurekAlert!

More Information:

http://www.helmholtz-hzi.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors