Insulin-like hormones critical for brain plasticity

Insulin-like growth factors (IGF1/IGF2-cyan spheres) are released from the postsynaptic compartment of a synapse during plasticity. To understand how IGF1 and IGF2 promote memory formation, Tu et al. developed a biosensor to detect the activity of the IGF1-receptor during synaptic plasticity, the cellular process that strengthens connections between neurons during learning. They discovered a region-specific, autocrine signaling mechanism in the hippocampus that promotes synapse growth and strength. Disrupting IGF signaling impaired plasticity, highlighting the critical role of the insulin superfamily in maintaining cognitive health.
Credit: Illustration by Ella Maru Studios

Research from the Max Planck Florida Institute for Neuroscience has identified a mechanism through which insulin-like growth factors facilitate brain plasticity.

The insulin superfamily of hormones, including insulin, insulin-like growth factor 1 (IGF1), and insulin-like growth factor 2 (IGF2), play a crucial role not only in regulating blood sugar, metabolism, and growth, but also in healthy brain development and function, including learning and memory. These hormones can enter the brain through the bloodstream from the liver or can be synthesized directly in neurons and glial cells within the brain. They bind to receptors, including the IGF1-Receptor, activating signals that modulate neuron growth and activity. Disruption of this signaling pathway is involved in cognitive decline and diseases such as Alzheimer’s.

To understand how IGF1 and IGF2 promote brain health, scientists investigated the activation of this signaling pathway in the hippocampus, an area of the brain critical for learning and memory. Specifically, they wanted to explore whether IGF signaling was active during synaptic plasticity, the cellular process that strengthens connections between neurons during memory formation and protects against cognitive decline.

To do this, Max Planck scientists developed a biosensor that detected when the IGF1-Receptor was active, allowing them to visualize the activity of the signaling pathway involved in plasticity. When a synapse was undergoing plasticity, the scientists observed that the IGF1-Receptor was robustly activated in the strengthening synapse and nearby synapses. This receptor activation was critical for synaptic growth and strengthening during plasticity. However, where the IGF that activates the receptor was coming from was unknown.

Lead researcher and first author of the scientific publication, Dr. Xun Tu, however, described how being able to visualize the receptor activation during plasticity gave them a clue. “The fact that the activation of the IGF-Receptor was localized near the synapse undergoing plasticity suggested that IGF1 or IGF2 might be produced in hippocampal neurons and locally released during plasticity,” she explained.

To explore this hypothesis, the scientists tested whether IGF1 and IGF2 were produced and could be released from hippocampal neurons. Interestingly, they found a region-specific difference in the production of IGF1 and IGF2. One group of neurons in the hippocampus, CA1 neurons, produced IGF1; another group, CA3 neurons, produced IGF2 (see picture). When either CA1 or CA3 neurons were activated in a way that mimicked synaptic plasticity, IGF wasreleased. Importantly, when the scientists disrupted the ability of the neurons to produce IGF, the activation of the IGF1-Receptor during plasticity and synaptic growth and strengthening was blocked.

Senior author on the publication and Max Planck Scientific Director, Dr. Ryohei Yasuda, summarized the findings. “This work reveals a local, autocrine mechanism in neurons that is critical for brain plasticity. When a synapse undergoes plasticity, IGF is released locally to activate the IGF1-Receptor on the same neuron. Disrupting this mechanism impairs the plasticity, highlighting its critical role in maintaining cognitive health.”

This discovery of this new mechanism sheds light on how memories are encoded in the brain and highlights the importance of further study on the insulin superfamily of hormones in the brain. The scientists hope that understanding the mechanism through which IGF hormones facilitate brain plasticity, will lead to research into whether targeting this signaling pathway could prevent cognitive decline and combat diseases like Alzheimer’s.

 

Tu, X., Jain, A., Parra Bueno, P., Decker, H., Liu, X., & Yasuda, R. (2023). Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors. Science Advances, 9(31), eadg0666. Link.

This research was supported by Louis D Srybnik Foundation Inc. and Foundation for the Art, Science, and Education Inc., the National Institutes of Health (Grant Numbers: R35NS116804, DP1NS096787, and R01MH080047), and the Max Planck Florida Institute for Neuroscience. This content is solely the responsibility of the authors and does not necessarily represent the official views of the funders.#

Journal: Science Advances
DOI: 10.1126/sciadv.adg0666
Method of Research: Experimental study
Subject of Research: Animal tissue samples
Article Title: Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors.
Article Publication Date: 2-Aug-2023
COI Statement: R.Y. is the owner of Florida Lifetime Imaging LLC, a company that sells integrated solutions for performing fluorescence lifetime imaging and fluorescence resonance energy transfer imaging. The other authors declare that they have no competing interests.

Media Contact

Katie Edwards
Max Planck Florida Institute for Neuroscience
katie.edwards@mpfi.org
Office: 561-679-7395

Media Contact

Katie Edwards
Max Planck Florida Institute for Neuroscience

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors