Highly sensitive sensor fibre

Scientists of the Saarland University of Applied Sciences succeeded in developing a special nano-scale layer which is highly sensitive to stretching. This layer called “nanoNi@C” is also presented in a second technology offer. In a new development process, the scientists implemented a application oriented sensor geometry in form of a fibre. This new sensor fibre has all advantages of the developed nanoNi@c-layer and is practical in universal circumstances. It can easily be connected to or embedded into structures that need to be measured. In various contexts, such as automotive and aircraft construction, structural health monitoring and supervision tasks in the field of industrial hydraulic accumulators or consumer electronics the new fibre is beneficial. It is ten times more sensitive than anyone available on the market. Therefore, completely new opportunities are possible.

Further Information: PDF

Universität des Saarlandes Wissens- und Technologietransfer GmbH PatentVerwertungsAgentur der saarländischen Hochschulen
Phone: +49 (0)681/302-71302

Contact
Dipl.-Kfm. Axel Koch (MBA), Dr. Conny Clausen, Dr. Hauke Studier, Dr. Susanne Heiligenstein

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors