Self-Healing Autonomous Material Comes to Life

This “Terminator” scenario is becoming less far-fetched as recent advances in structural health monitoring systems have led to a variety of ways to identify damage to a structural system.

Now, in the Journal of Applied Physics, researchers at Arizona State University have created a material that may be able to not only sense damage in structural materials, such as cracking in a fiber-reinforced composite, but to even heal it. The aim of developing “autonomous adaptive structures” is to mimic the ability of biological systems such as bone to sense the presence of damage, halt its progression, and regenerate itself.

The novel autonomous material developed by Henry Sodano and colleagues uses “shape-memory” polymers with an embedded fiber-optic network that functions as both the damage detection sensor and thermal stimulus delivery system to produce a response that mimics the advanced sensory and healing traits shown in biological systems. An infrared laser transmits light through the fiber-optic system to locally heat the material, stimulating the toughening and healing mechanisms.

The material system is capable of increasing the toughness of a specimen by 11 times. After toughening the specimen, the crack can be closed using the shape-memory effect to recover an unprecedented 96 percent of the object's original strength. In fact, after the crack is closed, the new material is nearly five times as tough as the original specimen, even though it has been strained past its original failure strain point by a factor of four. The material and healing process can be applied while the structure is in operation, which has not been possible with existing healing techniques.

The article, “Autonomous Materials with Controlled Toughening and Healing” by Michael Garcia, Yirong Lin, and Henry Angelo Sodano appears in the Journal of Applied Physics. See: http://link.aip.org/link/japiau/v108/i9/p093512/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

NOTE: An image is available for journalists. Please contact jbardi@aip.org

CAPTION: Thermal image of a metal test specimen undergoing the photo-thermal heating method.

ABOUT JOURNAL OF APPLIED PHYSICS
Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Media Contact

Jason Socrates Bardi Newswise Science News

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors