Functional MRI shows how mindfulness meditation changes decision-making process

According to research conducted over the last three decades; only about one-fourth of us would say, “Sure. Thanks.” The rest would say, “But that's not fair. You have lots. Why are you only giving me a few?” In fact, people will even turn down any reward rather than accept an 'unfair' share.

Unless they are Buddhist meditators, in which case – fair or not – more than half will take what is offered, according to new research by Ulrich Kirk, research assistant professor with the Human Neuroimaging Laboratory at Virginia Tech; Jonathan Downar, assistant professor with the Neuropsychiatry Clinic and the Centre for Addition and Mental Health at the University of Toronto; and Montague, published in the April 2011 issue of Frontiers in Decision Neuroscience.

Their research shows that Buddhist meditators use different areas of the brain than other people when confronted with unfair choices, enabling them to make decisions rationally rather than emotionally. The meditators had trained their brains to function differently and make better choices in certain situations.

The research “highlights the clinically and socially important possibility that sustained training in mindfulness meditation may impact distinct domains of human decision making,” the researchers write.

The research came about when Montague wondered whether some people are capable of ignoring the social consideration of fairness and can appreciate a reward based on its intrinsic qualities alone. “That is,” he said, “can they uncouple emotional reaction from their actual behavior?”

Using computational and neuroimaging techniques, Montague studies the neurobiology of human social cognition and decision-making. He and his students recruited 26 Buddhist meditators and 40 control subjects for comparison and looked at their brain processes using functional MRI (fMRI) while the subjects played the “ultimatum game,” in which the first player propose how to divide a sum of money and the second can accept or reject the proposal.

The researchers hypothesized that “successful regulation of negative emotional reactions would lead to increased acceptance rates of unfair offers” by the meditators. The behavioral results confirmed the hypothesis.

But the neuroimaging results showed that Buddhist meditators engaged different parts of the brain than expected. Kirk, Downar, and Montague explained that “The anterior insula has previously been linked to the emotion of disgust, and plays a key role in marking social norm violations, rejection, betrayal, and mistrust. In previous studies of the ultimatum game, anterior insula activity was higher for unfair offers, and the strength of its activity predicted the likelihood of an offer being rejected. In the present study, this was true for controls. However, in meditators, the anterior insula showed no significant activation for unfair offers, and there was no significant relationship between anterior insula activity and offer rejection. Hence, meditators were able to uncouple the negative emotional response to an unfair offer, presumably by attending to internal bodily states (interoception) reflected by activity in the posterior insula.”

The researchers conclude, “Our results suggest that the lower-level interoceptive representation of the posterior insula is recruited based on individual trait levels in mindfulness. When assessing unfair offers, meditators seem to activate an almost entirely different network of brain areas than do normal controls. Controls draw upon areas involved in theory of mind, prospection, episodic memory, and fictive error. In contrast, meditators instead draw upon areas involved in interoception and attention to the present moment. …This study suggests that the trick may lie not in rational calculation, but in steering away from what-if scenarios, and concentrating on the interoceptive qualities that accompany any reward, no matter how small.”

The article, “Interoception drives increased rational decision-making in meditators playing the Ultimatum Game,” is available at http://bit.ly/gp6YnA. Learn more about the Human Neuroimaging Lab at http://research.vtc.vt.edu/hnl/.

Media Contact

Susan Trulove EurekAlert!

More Information:

http://www.vt.edu

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors