Eco-Computer with a natural wood look

The environmentally-sound touch-screen PC, iameco, is definitely out of the ordinary – indeed, it is made out of wood.<br>© MicroPro<br>

A work tool, a leisure activity resource, a personal assistant – computers are ubiquitous. Yet the environmental performance for today‘s computers leaves a lot to be desired: they rapidly become obsolete, typically contain toxic substances as flame retardants and have individual components that are difficult to recycle. Moreover, they consume plenty of power whose production, in turn, causes the release of CO2 into the atmosphere.

Employees at the MicroPro Company in Ireland, working in collaboration with colleagues at the Fraunhofer Institute for Reliability and Microintegration IZM in Berlin, have engineered a wooden-frame computer with reduced environmental impacts. As the first computer of its class, the “iameco” (pronounced “I – am – eco”) was awarded for the “EU Ecolabel,” the European Union’s environmental label.

“This touch-screen PC has a very low energy consumption over the entire lifecycle of the unit – starting from production, through the use phase to its ultimate recycling,” explains Alexander Schlösser, scientist at IZM. The carbon footprint is less than 360 kilograms CO2eq over the full product life cycle, which is 70 percent less than a typical desktop PC with monitor.

In addition, it can be easily recycled. Of the materials used, 98 percent can be recycled. Indeed, 20 percent of the computer can be recycled immediately – in other words, many parts and components can be reused for repairing other computers – such as parts of the wooden frame.

Heatsinks replace fans

But how is it possible to design such an environmentally-friendly PC? One example: to ensure that the processor does not overheat, a fan typically provides cooling to the PC. This kind of ventilation not only consumes energy, it also comes with an annoyingly incessant buzz. So, the fans were replaced with heatsinks, which convey the heat from the processor via copper tubes, called heat pipes. This fan-free design saves energy, and the computer is barely audible. The scientists also got creative with the display lighting. Instead of conventional lighting, LEDs illuminate the screen and improve its energy efficiency by 30 to 40 percent. The manufacturers reduced the hazardous materials to a minimum, and for the most part substituted halogenated flame retardants with chemicals that are less harmful to the environment. Over the long term, these halogenated flame retardants should disappear from all computers.

Since the eco-PC was designed with standard components, users can retrofit it anytime – for example, if more internal memory is needed. And if the computer were to crash , the users would benefit from the improved dissasembly and modular design of the device. This enables the capability for easier repair and maintenance. Only those components will be replaced that are so severely damaged that they can no longer be repaired. The better maintenance option ensures a longer product life, and the easily conducted repairs ensure a high degree of environmentally sound engineering. In the next stage, the manufacturer intends to expand the modularity of the computer so that after a few years, users can equip older computers with a new internal life. The “old” computer would then return to the latest state of the art – and would cost only half as much as a completely new PC. The employees at MicroPro and IZM want to continue collaborating in the future as well. At this time, they are jointly developing an environmentally-friendly wooden frame notebook.

Media Contact

Alexander Schlösser Fraunhofer Research News

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors