Deadly carbon monoxide prevents miscarriage

Too little HO-1 can lead to a restriction in the growth of the fetus and even in fetal death and miscarriage. New research published in BioMed Central's open access journal Medical Gas Research has shown that low dose carbon monoxide therapy is able to restore placental function and prevent fetal death in mice, without any detrimental effects.

Intrauterine growth restriction due to problems in placental function and blood flow can result in a 'small for gestational age' baby, miscarriage or perinatal death. Both miscarriage and pre-eclampsia are associated with low levels of HO-1 in the placenta, however research suggests that carbon monoxide can mimic the effects of HO-1. Researchers from the Otto-von-Guericke University, Germany tested carbon monoxide therapy on intrauterine growth restriction in mice. They found that an extended course of low dose (50ppm) carbon monoxide was able to reduce fetal loss from 30% to zero – all the babies survived.

Prof Ana Claudia Zenclussen, who led the research explained, “At the levels used to prevent fetal death we found that inhaled low dose carbon monoxide was anti-inflammatory. It reduced the amount of cell death (apoptosis), and increased levels of the anti-apoptotic molecule BAG-1, in the placenta and additionally increased the level of vascular endothelial growth factor (VEGF), which is associated with angiogenesis and blood vessel repair.”

Intrauterine growth restriction is a serious complication of pregnancy. Surviving babies have a lifelong increased risk of hypertension, cardiovascular disease and renal disease. In the face of these fears carbon monoxide therapy may provide a lifeline to mothers at risk. However there is a cautionary note – higher doses of carbon monoxide were able to improve placental function but were damaging to the fetus, shorter treatment at low dose was not enough to prevent fetal death. Prof Zenclussen warned, “It is very important, given the inherent dangers in using carbon monoxide, that the dose and length of treatment are tightly controlled.”

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: 44-20-3192-2370
Mob: 44-778-698-1967
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Exploring the potential of low doses carbon monoxide as therapy in pregnancy complications. Tarek El-Mousleh, Pablo A Casalis, Ivonne Wollenberg, Maria L Zenclussen, Hans D Volk, Stefanie Langwisch, Federico Jensen and Ana C Zenclussen Medical Gas Research (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Medical Gas Research is an open-access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Media Contact

Dr Hilary Glover EurekAlert!

More Information:

http://www.biomedcentral.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors