Connectomics: Mapping the Neural Network Governing Male Roundworm Mating

The study represents a major contribution to the new field of connectomics – the effort to map the myriad neural connections in a brain, brain region or nervous system to find the specific nerve connections responsible for particular behaviors. A long-term goal of connectomics is to map the human “connectome” – all the nerve connections within the human brain.

Because C. elegans is such a tiny animal– adults are one millimeter long and consist of just 959 cells – its simple nervous system totaling 302 neurons make it one of the best animal models for understanding the millions-of-times-more-complex human brain.

The Einstein scientists solved the structure of the male worm’s neural mating circuits by developing software that they used to analyze serial electron micrographs that other scientists had taken of the region. They found that male mating requires 144 neurons – nearly half the worm’s total number – and their paper describes the connections between those 144 neurons and 64 muscles involving some 8,000 synapses. A synapse is the junction at which one neuron (nerve cell) passes an electrical or chemical signal to another neuron.

“Establishing the complete structure of the synaptic network governing mating behavior in the male roundworm has been highly revealing,” said Scott Emmons, Ph.D., senior author of the paper and professor in the department of genetics and in the Dominick P. Purpura Department of Neuroscience and the Siegfried Ullmann Chair in Molecular Genetics at Einstein. “We can see that the structure of this network has spatial characteristics that help explain how it exerts neural control over the multi-step decision-making process involved in mating.”

In addition to determining how the neurons and muscles are connected, Dr. Emmons and his colleagues for the first time accurately measured the weights of those connections, i.e., an estimate of the strength with which one neuron or muscle communicates with another.

The Science paper is titled “The connectome of a decision-making neural network.” Other authors were: lead authors Travis Jarrell and Yi Wang, Ph.D., Adam E. Bloniarz, Christopher Brittin, Meng Xu, and David Hall, Ph.D., all at Einstein, and J. Nichol Thomson and Donna Albertson, Ph.D., formerly at MRC Laboratory of Molecular Biology in Cambridge, England.

The research was supported by the Medical Research Council (U.K.); the National Institute of Mental Health (R21MH63223) and the Office of Behavioral and Social Sciences Research (OD010943), both of the National Institutes of Health; and the G. Harold and Leila Y. Mathers Charitable Foundation.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation’s premier centers for research, medical education and clinical investigation. During the 2011-2012 academic year, Einstein is home to 724 M.D. students, 248 Ph.D. students, 117 students in the combined M.D./Ph.D. program, and 368 postdoctoral research fellows. The College of Medicine has 2,522 full time faculty members located on the main campus and at its clinical affiliates. In 2011, Einstein received nearly $170 million in awards from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS.

Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center – Einstein’s founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest post-graduate medical training programs in the United States, offering approximately 155 residency programs to more than 2,200 physicians in training. For more information, please visit www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Media Contact

Scott Emmons Newswise Science News

More Information:

http://www.einstein.yu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors