Channeling into cell control

Figure 1: A cell emitting fluorescent signals as a result of attaching specialized proteins to two of its channel-forming IP3Rs (scale bar, 10 µm). Copyright : PNAS<br>

A research team from the RIKEN Brain Science Institute in Wako has visualized and accurately modeled the molecular changes that open and close the internal membrane channels for calcium ions within cells1. The ions moving through these channels act as intracellular messengers, relaying information that regulates the activity of the proteins that control many critical processes of life and death—from fertilization through to development, metabolism and, ultimately, death.

Previous work by the team showed that inositol trisphosphate (IP3) and calcium ions are involved in regulating channel opening and closing. The channels are formed from complexes of four IP3 receptors (IP3R) that bind IP3 and calcium. At low concentrations of calcium ions, channel opening is stimulated; but at higher levels, it is inhibited. Although cell biologists have proposed models depicting this process, they had failed to collect any definitive evidence supporting a particular the mechanism, until now.

In live cells, Takayuki Michikawa, Katsuhiko Mikoshiba and their colleagues attached fluorescent proteins to two of the channel-forming IP3Rs because these receptors change shape in response to the binding of IP3 and calcium, and energy flows between this pair of proteins in a process known as Förster resonance energy transfer (FRET) (Fig. 1). In a detectable way, FRET changes the fluorescent light emitted, so the impact of such links on the conformation of the channel can be studied.

The researchers found there were at least five binding sites on each IP3R, one for IP3 and at least four for calcium. Binding IP3 tended to bring the receptors forming the channel closer together, while calcium tended to make them relax. But the effects of combining the two were not simply additive. At a constant level of IP3, they observed an optimum concentration of calcium that had the most impact on opening the channel.

From these results, the researchers proposed a model whereby IP3 and calcium ions compete with one another—the binding of IP3 prevents calcium linking to certain sites, and vice versa. High concentrations of calcium prevent IP3 from binding at all. Further, the researchers proposed two different types of calcium binding sites: low-affinity sites responsible for channel activation, and high-affinity sites for inactivation.

“During the past five years, we have succeeded in visualizing IP3 dynamics and calcium pump activity,” Michikawa and Mikoshiba say. “In combination with the model for the calcium release channel described in this study, we are now ready to understand what happens in living cells during calcium ion oscillations.”

The corresponding author for this highlight is based at the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors