Birth of a planet

Most planets form when a molecular cloud collapses into a young star. The leftover gas and dust form a disk around the star, and the particulates inside the disk begin to collide and coalesce over millions of years, forming larger and larger objects until a planet eventually takes shape.

Sally Dodson Robinson, astronomer, and her team of researchers at The University of Texas at Austin are modeling and simulating these protostellar disks. The simulations model important factors such as the turbulence and temperature of the disk, which affect how and where planets form. In a disk that is too turbulent, the particles move too fast and bounce off each other. Less turbulence means a greater chance for them to collide and stick together.

Discoveries like this are a result of the complexity of the models and simulations, which cover a timescale of millions of years. The considerable computation involved in this project was facilitated by the Ranger supercomputer at the Texas Advanced Computing Center (TACC).

In 1988, we knew of one solitary extrasolar planet. In 2012, we know of almost 2,400 awaiting confirmation. Understanding the conditions that are most favorable for planet formation will aid researchers like Sally Dodson Robinson in discovering more of them, and will also provide greater understanding of the evolution of Earth and our own solar system.

A YouTube video is available at:
http://www.youtube.com/watch?v=G1f_grkp398

Media Contact

Faith Singer-Villalobos EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors